H

Y <. >
;p,? JOURNAL OF
l;g GEOMETRY ano
PHYSICS
ELSEVIER Journal of Geometry and Physics 29 (1999) 87-150

Smooth coalgebras

Zbigniew Jaskolski !
Institute of Theoretical Physics, University of Wroclaw pl. Maxa Borna 9, PL-50-206 Wroclaw, Poland

Received 9 April 1998

Abstract

A complete mathematical framework for coalgebraic formulation of supergeometry and its
infinite-dimensional extension is proposed. Within this approach a supermanifold is defined as a
graded coalgebra endowed with a smooth structure. The category of such coalgebras is constructed
and analysed. Itis shown that it contains as its full subcategories both the category of smooth Fréchet
manifolds and the category of finite-dimensional Berezin—Leites—Kostant supermanifolds. © 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

There are basically two different approaches to supergeometry: the algebraic approach
introduced by Berezin and Leites [8] and further developed by Kostant [19] and Leites
[22], cf. [7,12,25,35]; and the geometrical approach proposed by Rogers [31] and DeWiit
[11], cf. [2,3,9,18,30]. The theoretical framework incorporating both approaches was first
proposed by Rothstein in the form of axiomatic definition of a supermanifold [33] and
further analysed and improved by Bruzzo et al. [4]. The Berezin-Leites—Kostant (BLK)
theory provides the simplest realisation of this axiomatic definition perfectly sufficient
to derive all nontrivial results of finite-dimensional supergeometry including theories of:
Lie supergroups [19], complex supermanifolds [15,29,32], supersymplectic supermanifolds
[13,34], or moduli of super Riemann surfaces [1,6,14,21].
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All these results supported by methods of algebraic and analytic geometry along with
conceptual simplicity of the BLK approach (it does not contain any spurious Grassman
algebra of constants) make it a perfect mathematical language for all physical applica-
tions in which a finite-dimensional geometry is involved. In supersymmetric classical and
quantum field theories however one has to deal with infinite-dimensional superspaces of
supergeometric stcrutures. A typical problem one encounters in this type of applications
is to analyse the global structure of supermoduli intuitively constructed as a quotient of
an infinite-dimensional supermanifold of field configurations by an infinite-dimensional
supergroup of gauge transformations. This construction well known for “bosonic” models
was never made rigorous in the super case. The only method available is based on finite-
dimensional techniques of deformation theory [1,14,21]. Aithough it usually provides quite
alot of information about global geometry of the supermoduli, analysing induced structures
seems to require constructing the quotient. The lack of rigorous and efficient methods of
infinite-dimensional supergeometry is also responsible for the informal heuristic way one
treats anticommuting classical fields in physical models. As a consequence the understand-
ing of global geometry of supermanifolds of field configurations as well as actions of gauge
supergroups on these supermanifolds is in sharp contrast with sophisticated methods of
standard global functional analysis [16,28] and detailed knowledge about similar problems
in “bosonic” models.

The aim of the present paper is to construct an infinite-dimensional extension of the
BLK supergeometry. Before discussing a possible solution to this problem, let us briefly
consider what kind of examples of infinite-dimensional supermanifolds one should expect
in physical models. In the standard smooth geometry the most important and interesting
class of objects studied via methods of functional nonlinear analyses are manifolds of
maps with possibly additional properties like that carried by sections of bundles. In par-
ticular manifolds of various geometrical structures belong to this class which is actually
essential for the physical and most of mathematical applications of infinite-dimensional
geometry [16,28]. One can expect that also in supergeometry, supermanifolds of maps
are fundamental for a geometric formulation of supersymmetric models. For an excel-
lent heuristic discussion of the notion of map between supermanifolds in the context
of physical applications we refer to the paper by Nelson [27]. A special case of maps
from the supermanifold S'! to a manifold was also analysed by Lott [23,24]. The main
points is that supergeometry requires a notion of map essentially wider than the notion
of morphism. This is in contrast to the standard smooth geometry where both notions
coincide.

In the BLK category, morphisms are defined as even Z;-graded algebra morphisms. For
instance for any pair .4, B of supermanifolds all BLK morphisms from 4 to B form an
ordinary (not graded) infinite-dimensional manifold Mor(A, B). One would rather expect
a supermanifold of maps Map(.A4, B) with Mor(A4, B) playing the role of its underlying
manifold. In particular one would like to interpret the Z,-graded space of real-valued su-
perfunctions on a finite-dimensional supermanifold .4 as a model space of a linear infinite-
dimensional supermanifold of maps from .4 to R. Certainly morphisms from .4 to R form
only the even part of this superspace.
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The fact that morphisms are not enough to capture the intuitive notion of “odd” maps
one needs in physical application is sometimes referred to as the main shortcoming of the
BLK theory (see for example the discussion in [10]). In its simplest form the argument
says that coefficients of a superfunction are ordinary real-valued functions which do not
anticommute and therefore cannot provide a working model for anticommuting classical
fields one needs in physics.

This apparent drawback can be simply overcome by regarding anticommuting classical
fields as odd coordinates on an infinite-dimensional supermanifold of fields configurations
[36]. Within the BLK approach the odd variables {6, }gzl can be seen as a basis in the odd
part of a Z,-graded model space R = R @ R". As such they are genuine “commuting”
objects of standard linear algebra. The “anticommuting” nature shows up when elements
of the dual basis {#“}"_, are interpreted as generators of the exterior algebra A(R")" over
[R"]. Following this line of thinking one can regard classical fermion fields as elements
of the ordinary linear space F; of sections of an appropriate bundle, with F; being the
odd part of an infinite-dimensional Z;-graded model space F = Fo @ F;. Elements of F;
anticommute as arguments of functionals from the exterior algebra AF] and play essentially
the same role as f-variables in the finite-dimensional case.

It should be stressed that a reasonable extension of an ordinary manifold Mor(A, B)
to supermanifold Map(.A4, B) requires a global constuction. Indeed according to the basic
idea of the BKL approach one can think of “odd maps” as odd coordinates of an infinite-
dimensional supermanifolds of maps Map(A4, B) rather than elements of some set. This
means in particular that also the notion of composition cannot be defined point by point but
rather as a morphism of supermanifolds

o : Map(A, B) x Map(B, C) — Map(A4, C),

where x stands for the direct product in the category of infinite-dimensional supermanifolds.
The obvious requirement for composition o is that its underlying map coincides with the
standard composition of morphisms of finite-dimensional supermanifolds.

Another problem of constructing an infinite-dimensional supergeometry is to choose an
appropriate class of model spaces. Since the composition of morphisms in the BLK cate-
gory involves differentiation of their coefficient functions with respect to even coordinates,
smoothness is the minimal possible requirement for morphisms and functions. In conse-
quence supermanifolds of supergeometrical structures which are expected to be most inter-
esting objects of infinite-dimensional supergeometry should be modelled on Fréchet spaces.

The first systematic formulation of infinite-dimensional supergeometry was given by
Molotkov [26]. In this approach Banach supermanifolds are defined as functors from the
category of finite-dimensional real Grassmann superalgebras AR” (n = 1,2, ...) to the
category of smooth Banach manifolds

M AR" — M(ARM).

For each Grassman algebra AR", M(AR") can be identified with smooth manifold of
morphisms Mor(P,, M) where P, denotes finite-dimensional supermanifold with zero
even dimension and the odd dimension n (n-dimensional superpoint).
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The idea to regard supermanifolds as point functors was first introduced by Schwarz in
his attempt to reconcile the standard sheaf formulation of BLK finite-dimensional geometry
with the intuitive informal language used by physicists [39]. The equivalence of Schwarz’s
approach with the BLK theory was shown by Voronov in [41]. Molotkov’s formulation can
be seen as a proper generalisation of the Schwarz description to infinite-dimensions (i.e. the
BLK category of finite-dimensional supermanifolds is a full subcategory of the category of
smooth Banach supermanifolds).

For any two supermanifolds .4, B (not necessarily finite-dimensional) the supermanifold
of maps can be defined by the functor

Map(A, B) : AR" — Mor(P, x A, B).

The formalism also allows for a construction of a composition with the required properties
and applies as well to smooth supermanifolds modelled on locally convex or tame Fréchet su-
perspaces. In principle, Molotkov’s formulation satisfies all requirements a mathematically
rigorous infinite-dimensional supergeometry should satisfy. It has been in fact implicitly
used in several papers when a rigorous treatment of elements of infinite-dimensonal su-
pergeometry was unavoidable [1,21,23,24]. However, technical and conceptual difficulties
of this approach make its wider application in physics highly problematic. According to
the basic idea of the functorial approach, an object A in the category is fully described by
morphisms Mor(P,, A) from a sufficiently large family {P,},<; of other objects. Such a
description is in sharp contrast with the intuitive physical understanding of space or super-
space. Also technicalities involved are in contrast with relatively simple heuristic formalism
used by physicists.

Another approach to infinite-dimensional supergeometry aimed to avoid the functorial
definition of supermanifolds was developed by Schmitt [37,38]. The basic idea is to define an
infinite-dimensional supermanifold as a ringed space. Although not functorial, this approach
is technically even more complicated. The main reason is that in the infinite-dimensional
supergeometry the language and methods of algebraic geometry are essentially less efficient
and less powerful than in the finite-dimensional case. In the standard BLK approach one
has a very simple algebraic description of morphisms between supermanifolds, either as
morphisms of sheaves of graded algebras or as morphisms of graded algebras of functions.
Also vector fields on a supermanifold can be described in a purely algebraic way as graded
derivations of the graded algebra of superfunctions. Proceeding to infinite-dimensional
geometry one can still consider sheaves of smooth functionals but the simple algebraic
descriptions of morphisms and vector fields are no longer available. Additional conditions
involving topology as well as differential calculus on the infinite-deimensional model spaces
are required in both cases. In fact technical difficulties involved were overcome only in
the case of real-analytic and complex-analytic supermanifolds [37,38] which essentially
restricts possible physical applications of the theory. It is also not clear how to construct
supermanifolds of maps and composition within this approach.

The formalisms of both approaches seem to be technically too difficult when com-
pared with relatively simple heuristic rules used by physicists even in most complicated
geometrical supersymmetric models. This suggests that there might be a simpler theory
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incorporating all desired features of the hitherto formulations but better suited for con-
structing and analysing examples arising in physical applications.

The aim of the present paper is to construct an alternative coalgebraic formulation of
infinite-dimensional supergeometry which allows to avoid at least some of the technicalities
of the functorial and the sheaf descriptions. The idea of such an approach was first proposed
in the excellent paper by Batchelor [5] where a candidate for the dual coalgebra of the
supermanifold of maps between finite-dimensional supermanifolds was constructed and
analysed.

For any associative algebra with unit (A, m, u), let us denote by A° the largest subspace
of the full algebraic dual A’ such that m’(A°) C A°® A°, wherem’ : A’ — (A® A)' isthe
map dual to the multiplicationm : A ® A — A. A° with comultiplication given by m’ and
counit given by ' is called the dual coalgebra of A. In the case of the algebra C*° (M) of
smooth functions on a finite-dimensional manifold M, C*°(M)° is called the dual coalgebra
of M and consists of all finite linear combinations of Dirac delta functions and their partial
derivatives. In the context of finite-dimensional supergeometry dual (Z,-graded) coalgebras
were first analysed and extensively used by Kostant in his theory of Lie supergroups [19].

The idea of Batchelor’s approach is to consider the dual algebra of a supermanifold as
a fundamental object. The crucial notion introduced in [5] is that of mapping coalgebra
P (A, B) defined for any two finite-dimensional supermanifolds .4, 13 in terms of universal
coalgebra measuring the algebra of superfunctions on B to the algebra of superfunctions
on A. Although the full structure theorem for P(.A, B) has not been proven, the map-
ping coalgebra has many expected properties of the dual coalgebra of the supermanifold of
maps Map(.A, B). In particular, the space of group-like elements of P (A, BB) coincides with
Mor(A, B). Moreover, there exists a simple definition of composition which leads to the ex-
pected Hopf algebra structure in the case of superdiffeomorphisms. Batchelor’s construction
can also be extended to coalgebras corresponding to supermanifolds of sections.

In the original paper [5], only the algebraic structure of mapping coalgebra has been
analysed. This is certainly not enough to define supermanifold in terms of its dual coal-
gebra. A pure coalgebra structure has to be supplemented by analytic data encoding a
smooth structure on a supermanifold. These additional data are also necessary to select
those coalgebra morphisms which correspond to smooth morphisms of supermanifolds.
Extra conditions in the definition of morphisms may seem to be a shortcoming of the
coalgebraic approach in comparison to the algebraic one where smooth morphisms can be
defined in a purely algebraic way. Let us however recall that the simple algebraic definition
does not work in the case of infinite-dimensional model spaces. Moreover, the detailed
discussion of morphisms within Schmitt’s sheaf formulation of infinite-dimensional super-
geometry shows that the coalgebraic structure is essential for an appropriate definition
of smoothness or analyticity [37]. On the other hand (as we shall see in the following)
the extra conditions one has to impose on coalgebraic maps are essentially identical to
the differentiability condition one imposes on maps of sets in the traditional definition of
smooth morphisms between manifolds.

In the present paper we propose an intrinsic way to handle the additional analytic data
necessary to describe smooth structures. The main result is the construction of the category



92 Z. Jaskélski/Journal of Geometry and Physics 29 (1999) 87-150

of smooth coalgebras which contains as its full subcategories both the BLK category of
finite-dimensional supermanifolds and the category of smooth Fréchet manifolds. This
provides a complete theoretical framework of the coalgebraic formulation of supergeometry.
Although Batchelor’s results [5] were our main motivation, we leave the construction of
smooth structure on the mapping coalgebra P (A, B) for future publications. This involves
in particular a construction of smooth atlas on the manifoid Mor(A, B), which goes far
beyond the scope of this paper.

It should be stressed that the coalgebraic description of supermanifolds has its advantages
even in the finite dimensions. First of all the general structure of the theory is similar to that
of the standard smooth geometry: supermanifolds are defined as sets with extra structure
and morphisms as maps of sets (with arrows in the “right” direction) preserving these
structures. Secondly the direct product in the category is just the algebraic tensor product
of coalgebras which makes many of the standard geometric constructions much simpler
and more intuitive than in the sheaf or the functorial approaches. Finally the coalgebraic
techniques proved to the very useful in Kostant’s theory of Lie supergroups [19]. In fact this
theory gets much simpler when smooth coalgebra morphisms are defined in the intrinsic
coalgebraic language without referring to the algebraic formulation.

The content of the paper is as follows. Section 2 contains preliminary material necessary
for further constructions. In Section 2.1 the basic facts about symmetric tensor algebra
S(X) of Z;-graded vector space X = Xo @ X are presented. In particular, Hopf algebra
structure on S(X) is described and a less known universal property of S(X) with respect
to its coalgebraic structure is proven. This property is crucial for our description of smooth
coalgebraic maps. In Sections 2.2 and 2.3 we recall some properties of the model category
fm of Fréchet manifolds and the model category sm of BLK supermanifolds, respectively.
In Section 2.4 the category of BLK finite-dimensional supermanifolds is briefly presented.
This well-known material is included for notationai purposes as well as for providing some
motivation for further constructions.

In Section 3 model category sc of smooth coalgebras is defined. In Section 3.1 we intro-
duce open coalgebras as objects of the model category. In Section 3.2 we present a crucial
(for all coalgebraic formulation) notion of smooth coalgebra morphism and prove that it
satisfies all the required properties. In particular, the component description of morphisms
is introduced and the formula for the composition is derived. In Section 3.3 the construc-
tion of model category se is completed and the direct product in sc is analysed. Finally, in
Section 3.4, we prove that the model category fm of Fréchet manifolds can be identified
with the full subcategory scp of even open coalgebras, and the model category sm of BLK
supermanifolds can be identified with the full subcategory se< of finite-dimensional open
coalgebras. This shows that sc is an appropriate extension of fm and sm. In Section 3.5 the
notion of superfunction on an open coalgebra is introduced and analysed.

In Section 4 we describe construction and main properties of the category SC of smooth
coalgebras. In Section 4.1 the smooth coalgebra is defined as a collection of objects from
the model category sc glued together with a collection of compatible morphisms from se.
Smooth morphisms of smooth coalgebras are defined along standard lines by requiring that
their local expressions are morphisms from sec. The notion of superfunction on a smooth
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coalgebra is defined and the functor from the category of smooth coalgebras SC to the
category of sheaves of Z,-graded algebras is constructed. In Section 4.2 the direct product
in the category SC is analysed. In Section 4.3 we prove that the full subcategory SCy of even
smooth coalgebras is isomorphic with the category of Fréchet manifolds. In Section 4.4 the
corresponding result for full subcategory SC™ of finite-dimensional smooth coalgebras and
the category of BLK supermanifolds is derived.

Appendix A contains definitions and basic facts about Z;-graded spaces (Appendix A.1),
algebras (Appendix A.2), coalgebras (Appendix A.3), and bialgebras (Appendix A.4). Also
some elementary material on dual coalgebras of finite-dimensional supermanifolds is briefly
presented (Appendix A.5).

2. Preliminaries
2.1. Symmetric algebra of graded vector space

Definition 2.1.1. Let X = Xy @ X be a Z;-graded space. A symmetric algebra of X is
a pair (S(X), 8) where S(X) is a Z;-graded commutative algebraand § : X — S(X) a
morphism of Z,-graded space such that the following universal property is satisfied.

For every Z;-graded commutative algebra A and every morphism Fy : X — A of Z;-
graded spaces there exists a unique Z,-graded algebra morphism F : S(X) — A making
the diagram

X S(X)

|

1

v
A
commute.

The uniqueness of S(X) is a standard consequence of the universal property. The existence
can be shown by explicit construction of S(X) as the quotient algebra

. 17Xy — 7TX)/1(X) = 5(X),

where (T (X), 6r : X — T (X)) is the tensor algebra of X and I (X) is the ideal generated
by elements

a®b—(—DWpga,

where a,b € Xo U X1, and | - | denotes the parity of an element. The ideal I(X) is
homogeneous with respect to the canonical Z, @ Z bigrading on T (X) and S(X) acquires
the structure of bigraded commutative algebra

5(x) = P sk,
k>0
i=0.1
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where SK(X) = S(’)‘ X) ® S{‘(X ) is the kth symmetric tensor power of X. Since I(X) is
generated by elements of degree 2, one has the identifications

X =7T°X) =R, sl =1"(x) =X,

and the canonical map 8 = @ o 6y : X — S(X) is injective.
The algebra S(X) is generated by the set {1} U Xo U X, i.e. every element w € S(X)
can be represented as a finite sum of monomials of homogeneous elements of X and 1.

Propeosition 2,1.1. Let X, Y be Z3-graded spaces and 0y : X — S(X), 0y : Y — S(Y)
the canonical inclusions into the corresponding symmetric algebras. Then the universal
extension

kK:S(XDY) — SX)®S(Y)
of the map
ko: XBY>3(a,b)—0xa@1l+1Q60ybc S(X)® SY)

is an isomorphism of bigraded algebras.

Remark 2.1.1. By Proposition 2.1.1 for each Z;-graded space X = Xo @ X there is the
canonical isomorphism of bigraded algebras

k:8(Xo® X)) — S(Xp) ® A(X)),

where S(Xp) is the usual symmetric algebra with its canonical Z -grading and the trivial
Z,-grading (S(Xp); = {0}), and A(Y)) is the usual exterior algebra of the vector space Y|
with its canonical Z> @ Z bigrading.

Proposition 2.1.2. Let X be a Z>-graded space and S(X) its symmetric algebra. Let A :
S(X) — S(X) ® S(X) be the universal extention of the map

d:X32a—a®l+1Q®ae SX)® S(X),

and ¢ : S(X) —> R the universal extention of the map0:X 2a > 0 R
Then (S(X), A, €) is a commutative cocommutative Z;-graded bialgebra.

Remark 2.1.2. We shall introduce some notational conventions which will be used in
various contexts in the following.

A k-partition of the index set {1, ..., n} is defined as a sequence P = {Py, ..., Pt} of
disjoint (possibly empty) subsets of the index set such that {1,...,n} = PiU--- U P. A
k-partition is nonempty if P; # @ foralli =1, ..., k. Note that a nonempty n-partition of
the index set {1, ..., n} is a permutation of {1, ..., n}.

Let X = {a;}]_, be a sequence of nonvanishing homogeneous elements of a graded
space X. For every nonempty subset P of the index set {1, ..., n} we define

ap = ap ---ap € $'(X),
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where {p1,..., pi} = P and p; < --- < p;. We denote the number of elements of P by
|P|.If P is empty we setap = 1 and |P| = 0.

For every k-partition P = { Py, ..., P;} of the index set {1, ..., n} we define the number
o (X, P) = %1 uniquely determined by the relation

ay---ar =0(X,Plap, ---ap,.

Proposition 2.1.3. Let (S(X), A, €) be the coalgebra of Proposition 2.1.2, and X =
{a;}!_| be a sequence of nonvanishing homogeneous elements of a graded space X. Then.:
1. A()=1®@ 1, ande(1) = 1.

2. Foreveryk > 1

Ak(al ...an) = Z U(X,P)aPI ®“.®aPk+l (1)

where the sum runs over all (k 4+ 1)-partitions of the index set {1, ..., n}.
3. e(a;---a,) =0.

Proposition 2.1.4. The symmetric algebra S(X) of a Z-graded space X with the coalge-
braic structure of Proposition 2.1.2 is a strictly bigraded cocommutative coalgebra.

Remark 2.1.3. It follows from Proposition 2.1.4 that S(X) is a pointed irreducible coalge-
bra. The relation between the Z_ -grading S(X) = GB;?_S_OSi (X) and the coradical filtration
S(X) =Ui»0 S®(X)is given by

k
SO Xy = @ SH(X).
=0

The coalgebraic structure of S(X) introduced in Proposition 2.1.2 is universal in the
following sense.

Theorem 2.1.1. Let S(X) be the symmetric algebra of a Z;-graded vector space X. There
exists a unique extension of the bigraded commutative algebra structure on S(X) to a strictly
bigraded commutative cocommutative Hopf algebra structure on S(X).

Remark 2.1.4. The antipode s : S(X) — S(X) is given by the universal extension of the
map
-:X3a > ~a € S(X)gp,

where S(X),p is the bigraded space S(X) with the “opposite” algebra structure given by
Myy(@a ®b) = (—1)IPIM(b ® a), u,, = u. One can easily show that for arbitrary
homogeneous elements ag, ..., a, € X, s(a1---ay) = (—1)"a, - -ay.

Definition 2.1.2. Let (C, A, ) be a Z,-graded coalgebra, (A4, M, u) a Z,-graded algebra,
and Hom(C, .A4) the space of linear maps from C to .4. Forany f, g € Hom(C, .4) we define

frxg=Mo(f®g)oA.



96 Z. Jaskolski/ Journal of Geometry and Physics 29 (1999) 87-150

By definition f * g € Hom(C, .A) and | f * g| = | f| + |g| (with respect to the standard
Z5-grading in Hom(C, A)). One easily verifies that Hom(C, .A) with the multiplication *
and the identity 1, = uoeg is a Z,-graded algebra. The multiplication * is called convolution.

The next theorem describes the universal property of S(X) with respect to its coalgebra
structure. This result is essential for our description of smooth coalgebra morphisms given
in the Section 2.2.

Theorem 2.1.2. Let S(X) be the symmetric algebra of a Z,-graded space X and n*:
S(X) — S (X) = X the projection with respect to the Z..-grading in S(X). Let C be
a pointed irreducible 7-graded cocommutative coalgebra and C™ the kernel of the counit
ec in C. Denote by pT : CT — C the inclusion and by i+ : C — C7 the projection with
respect to the direct sum decomposition C = R{p) @ C*, where p is the unique group-like
element of C. Then:

1. Forevery morphism ®* : CT — X of Z-graded spaces there exists a unique morphism

@ : C — S(X) of Zp-graded coalgebras such that the diagram

P

S(X)
'
3+ )

X

ct C

is commutative.
2. The universal extension @ is given by

1
— + — +k
® =x*exp® =E —k!CD ,
k=0
where
¢+Osuoec,

¢+k5¢+on+*-~*¢+on’+, k>1,
k

and * is the convolution in Hom(C, S(X)).

Note that in the purely even case X = Xy @ {0}, S(X) with respect to its Z_ -graded
coalgebra structure is isomorphic with the universal pointed irreducible cocommutative
coalgebra considered in [40]. Part 1 of the theorem above is a Z,-graded version of Theorem
12.2.5 in [40]. In the special case C = S(Y), where Y is a Z,-graded space, the explicit
formula for the universal extension has been derived in [37]. The proof given here is a
generalization of Schmitt’s method.

Lemma 2.1.1. With the notation of Theorem 2.1.2, for every k > 0 the following relation
holds:
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k
Acoth=3" (k) @7 et o Ac.

i
i=0
Proof. The case k = 0 is straightforward. For k = 1 one has
Aodtlo)=0TO)®@1+1@ ¢ ()

=Y (@ (cay) ®uoeclcw) +uosclen) ® D™ (cw))
(0

1
= Z ( ll ) @Y @ dt o Ac(o).
i=1

By definition of ¢ ¥

=Moo (@@ 0 Ac=Mo @) 0 Ac,
and

Pl Mo@HF P HoAc=Mo @' @D o Ac,
for all kK > 1. Then by the induction hypothesis and (3)

Aod™t =AcMo@*@ ot o Ac
=M@M)o(M[dQTQid)o(Acd@™ @ AcdT)) o A

—(MM)o(id® T ®id)
k
° Z ('II) (¢+i ® ¢+k—i ® (¢+l ® ¢+0+¢+0® ¢+1))
i=0

o (Ac ® Ac)o Ac

=MeM)
k
o Z (") @t oot g @tk g 0
=0 y

+o@eT0 et @ ot
c(d®T ®id) o (Ac ® Ac) o Ac.
As a consequence of the coassociativity and cocommutativity of Ac one has
([d®T®id) o (Ac ® Ac) o Ac = (Ac ® A¢) o Ac.
Using this relation and formulae (2) and (3) one finally gets

k
Ao @kt o Z (") (¢+i+l Qo Lot g ¢+k+l—i) o Ac
io M
k+1
=Z<n":_1)(¢+i®¢+k+l—i)oAC. 0
i=0

97

@

3
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Proof of Theorem 2.1.2. Existence. Let {C¥)};5¢ be the coradical filtration of C. For any
given k > 0 all terms (1/1!)@* with [ > k vanish on C*). By the structure theorem,
Theorem A.3.2 (see Appendix A), for every ¢ € C there exists k such that ¢ € C©), hence
*xexp @7 is well defined on C. By construction @ = *exp @ is a morphism of graded
spaces such that 7¥ o @ o p™ = @+, Using Lemma 2.1.1 one has

1k i —i
Aoqb:ZH(i)(w QP o Ac
k>0

11
=22 @ oeac
n>0m>0 =~

=(@®P)o Ac.
Fork > 1, #t* ¢ S(X)* = kere and
1
€°¢=£°uoac+kza€°¢+k=£c'
>0

It follows that @ is a morphism of graded algebras which completes the proof of existence.

Uniqueness. For any other extension @’ we have 7° 0 @ = 7% o & and therefore
Im(®’ — &) N P(S(X)) = {0}. Since S(X) is pointed irreducible, @’ = @ by Proposition
A.3.2 (see Appendix A). m|

2.2. Model category of Fréchet manifolds

Let U C X,V € Y be open subsets of the Fréchet spaces X and Y, respectively, and
¥ : U — V amap.

Definition 2.2.1. The derivative of ¢ : U — V at a point 4 € U in the direction x € X is
defined by
Yu+ex) -y

€

D" (u; x) = lim
e—>0
whenever the corresponding limit exists. One says that i is continuously differentiable or
C! on U if the limit exists for all u € U and x € X and if the map
Dy UxX—Y

is jointly continuous (as a map on a subset of the product).

Definition 2.2.2. The higher-order derivatives (k > 2) are inductively defined by

DXy (us; x1, ..., xk)

— lim DM (u + exis xp, oy xkm1) — DF M (us x1, L xmt)
e—0 € ’

whenever the corresponding limit exists.
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One says i is Ckif D*yr(u; x1, ..., xx) exists forallu € U and xy, ..., x; € X and is
jointly continuous as a map

D'y  UxXx---xX—Y.
k

A map v is smooth (C*) if it is Ckforallk > 0.

Ifyis Ckthen D*vr(u; x1, ..., x1)is totally symmetric and linear separatelyinxy, . . ., xx
[16]. It can therefore be extended in the second variable to the map

DMy U x S5(X) 3 (u; x1---xk) — D*yr(us x1, ..., xx) € Y,

where S¥(X) is the kth symmetric tensor power of X. In the following the same symbol
D¥+ will be used for the derivatives and for their extensions defined above.

Using the chain rule and the Leibnitz rule for the first derivative [16] as well as an
induction on k one gets the following:

Proposition 2.2.1. Ler U, V, W be open subsets of Fréchet space X, Y, Z, respectively,
and ¢ : U — V, ¥ : V — W, C* maps. Then the composition ¥ o ¢ is a C¥ map and for
alll <l <k ueU,andxi,...,x; € X one has

D' (Y o) (u; x1, ..., x1)

!
1 ,
=Y "= > D'y@w; DPpw;xp), ..., DPlpw; xp)), @)
P Py B}
12;1>0
where the sum runs over all ordered nonempty i-partitions of the index set {1, ...,1}.

Proposition 2.2.2. For all c* functions f,g : U > R 1<l <kandxy,...,x; € X one
has

DHf - xi,...., ;)= Y DI f@; xp)- DPlgw; xp,), (5)
{P1. P2}
where the sum runs over all ordered two-partitions of the index set {1,...,l} and the

convention D° f (u; xg) = f (u) is used.

Definition 2.2.3. The objects of the model category fm of smooth. Fréchet manifolds are
open subsets U C X where X runs over the category of Fréchet spaces.

For any two objects U, V € Ofm the space of morphisms Mfm(U, V) consists of all
smooth maps ¥ : U — V. The composition of morphisms is defined as the composition
of maps. An isomorphism in the category fm is called a diffeomorphism.

We denote by fm= the subcategory of fm consisting of all open subsets of finite-
dimensional Fréchet spaces and all fm-morphism between them.
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LetC;P = (U, C*°(-)) be the sheaf of smooth functionson U. A smoothmap ¢y : U — V
induces a morphism of sheaves of commutative algebras

V=¥ CFP — CF,
where for each open V' C V the algebra map v}, is given by
Yy 1 C¥(V) 3 f — foy eCPWT (V).

A morphism F = (F 0 F)y : CiP — Cy° of sheaves of commutative algebras is not
in general of this form. However, for the finite-dimensional Fréchet spaces one has the
following proposition.

Proposition 2.2.3. LerU e R™, V € R™ be open subsets.
1. For any morphism of sheaves of algebras

F=(F°F):Ccy —CY,

FO .U — V is smooth and F = FO.
2. For any algebra morphism A : C°(V) — C*®°(U) there exists a unique smooth map
Y 1 U — V such that Y, = A.

It follows that for U, V € Ofm ™ one has the 1-1 correspondence
Mfm(U, V) = Mfm=(U, V) 3 ¢ —> ¢y € Alg(C®(V), C®(U)).

This simple algebraic description of morphisms either as morphisms of sheaves of algebras
or as morphisms of algebras of function is no longer valid for infinite-dimensional Fréchet
spaces. In this case the space of morphisms of sheaves of algebras is essentially bigger
than the space of smooth maps of open sets. In order to characterize the sheaf morphisms
corresponding to smooth maps one needs some additional not algebraical conditions. This
makes the idea of ringed spaces in infinite-dimensional geometry rather awkward and dif-
ficult to deal with [37,38]. This is also the main difficulty in developing a working infinite-
dimensional extension of the Berezin—Leites—Kostant theory of supermanifolds which was
originally developed as a theory of ringed spaces [8,19].

2.3. Model category of BLK supermanifolds

Definition 2.3.1. The objects of the model category sm of supermanifolds are sheaves of
Z,-graded algebras o

Sg" = (U,C®() ® AR™),

where m, n are arbitrary nonnegative integers and U runs over all open sets of R™.
A [
For any two objects Sy, S " € Osm the space of morphisms Msm(S};”", Sy ")
consists of all morphisms of sheaves of Z,-graded algebras. The composition of morphisms
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is defined as the composition of morphisms of sheaves. An isomorphism in sm is called a
superdiffeomorphism.

(R™)' in the definition above denotes the space dual to R”. Anobject S;;"" € Osm is called
a superdomain of the superspace R™ @ R". For each open subset U’ of the underlying set
U the elements of the Z»>-graded algebra S™"(U’) = C®°(U’) ® A(R")’ are superfunctions
on U’. According to the Z;-grading

S™U) =S (U)o & S™" (U,

each superfunctions can be uniquely represented as the sum f = fo + fi of the even fy
and the odd f| parts. A superfunction f is called even (odd) 1f fi=0(fo=0).

For each sm-morphism F = (F, F) : S S'" " the map FO : U — V is
called the underlying part of F. In our notation, F. denotes the family of Z,-graded algebra
morphisms Fy : S™ " (V') —> Sy (FO=1(V’), where V' runs over all open subsets of V.
As a “super” counterpart of Proposition 2.2.3 one has [7,22,35].

Proposition 2.3.1. Let S;;", S"f/’", be superdomains.

1. For any sm-morphism F = (FO, F) : " — S"f,’"/ the underlying map F : U — V
is smooth.

2. For any morphism A : gm'n' V) - 8™ "(U ) of Z;-graded algebras there exists a
unique sm-morphism F = (F°, F) : 8" S'" " such that A = Fy.

Remark 2.3.1. It follows from Propositions 2.2.3 and 2.3.1 that the covariant functor

Osm 5 S;;" — U € Ofm~,

Msm > F = (F°, F) — F° e Mfm~
has the right inverse

Ofm= 3 U — Cf = S]}'¥ € Osm,
Mfm= 3 ¢ — ¢ = (¢, ¥*) € Msm. (6)

The image of the functor above coincides with the subcategory smg of sm consisting of all
objects of the form SZ‘O and all sm-morphisms between them. It follows that the model
category of finite-dimensional manifolds fm = can be regarded as the full subcategory smg
of the model category of BLK supermanifolds.

Let {12}1}';’=1 be a standard basis in R”. The functions u* : R DU s u — u* € R
uniquely defined by u = 2Z’=1u“ﬁ u are called the standard coordinates on U C R™.
Let {6%)"_, be the standard basis in (R")'. The collection {u', ..., 60, ..., 6"} regarded
as a subset of S™*(U) = C®(U) & A(R") is called the standard coordinate system
on S;;". In the standard coordinates every superfunction f € S™"(U) has a unique
representation

f=rfwo =0+ w0+ f{ o), (7
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where

i, 0>—Zk, Z iy o A - A O,

Q..o =1
even
n 1 n
AN A ()G A ... AGH
@0 =3 5 D0 . a@O A A0%,
k=1 oy,...,op=l

and fOw), fh . () € C®(U). The coefficient functions £ , (4) are assumed to be
totally antisymmetric in their indices. In the decomposition (7), f%(u) is called the un-
derlying and f"(u,0) = fOA(u, ) + fl’\ (u, 9) the exterior part of the superfunction
f.

Note that for an arbitrary sm-morphism F = (FC, F) : 87" — Sy " and any super-
function g € Sm'*"/(V) one has

(Fvg) =Fy(g =g F°,  (Fvg)} = Fv(g}),

but in general (Fyg)] # Fy(g]

Definition 2.3.2. Let {u!,...,u™ 6!,..., 6"} be the standard coordinate system on Sy
For each open subset U’ C U the partial derivatives of a superfunction f € S™"(U’) are
defined by

n

a 0 A o) g
s f w6 )——f° >+Zk, 2 g fara 00N A A,

oy, ap=1

ﬁ;f( ,6)= Z o Z Z( D™ Saa farer. .o @)

ay,..op=1 i=1

x@“' G ADE A A G,

where 6% means that 8% is omitted.

In the following we shall also use the compact notation {x/}}"%" for the standard coordi-
nate system {1*}_; U {6°};_, on 8", where

I ul forI=1,....m

A T forI=m+1,...,m+n.

Accordingly, for the partial derivatives one has

5 — W forI=1,...,m,
l—_

forl=m+1,...,m+n.

b
39{-m
Let {6,)7_, be the basis in R" dual to the basis {#*}" _, . Then {;}71)' = {@, Ul _,
is the standard basis in the Z;-graded space R" & R".
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Definition 2.3.3. Let f € 8™"(U) and a = £a’x; € R™ @ R". The first derivative of the
superfunction f in the direction a is defined by

m+n

D'f(u,0;a) =) a'd;f(u,0).

=1

Foray,...,ar € R™ @ R" the higher order directional derivatives are given by
m+n
Dkf(u,e;a],...,ak)= Z alll"'a]fkah"'alkf(u’e).
I,..., I =1

The kth-order differentiations (k > 1) are defined as the underlying parts of the kth-order
directional derivatives:

m-+n

~ 1
Difuan,....a)= Y a cealt @y, - 8y, 0.
In,..I=1

The higher directional derivatives and differentiations are totally antisymmetric in the
variables a1, . . ., a; and therefore can be uniquely extended (in the second variable) to linear
functions on the kth graded symmetric tensor power S¥(R™ @ R") of the Z,-graded space
R™ & R". With this interpretation one can use the notation of Remark 2.1.2 for arguments
of multilinear functions.

Using the graded Leibnitz rule for first derivatives and induction on k one gets the fol-
lowing multiple Leibnitz rule for superfunctions.

Proposition 2.3.2. Ler f, g € ™" (U) be superfunctions and X = {a,-}f.‘:l a sequence of
homogeneous elements of the graded space R™ & R". Then

DN(f - 2)w,8;a1,....a4)

= Z o (X, P)(~ D) len pIPil £y g ap,) - D\Plg(u, 6; ap,). 8)
P={(P1, P2}
where the sum runs over all 2-partitions of the index set {1, ..., k}, and the notation of

Remark 2.1.2 as well as the convention Dof(u, 0; xp) = f(u, ) are used.

The standard coordinate system on SZJ"’" generates the subalgebra of superfunctions with
polynomial coefficients. With the topology of uniform convergence on compact subsets
this is a dense subalgebra of S™"(U). The following proposition [7,22,25,35] says that
the standard coordinates behave as algebraic generators with respect to Z>-graded aige-
bra morphisms. This property is essential for the coordinate description of morphisms
in sm.

Proposition 2.3.3. Let {x'}["*" and {y’ }rjn’=+ln’ be the standard coordinate systems on S/;""

n

1ot ’ ’
and 8y ", respectively. Let {F’ }'J":]" be a collection of supperfunctions on Sj;" such
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that F' isevenfor J = 1,...,m', F! isodd for J = m' + 1,...,m’ + n', and the
map

FO:Usu— (FOW),..., F"%W)) e R™

has its image in V C R™ .
Then there exists a unique sm-morphism F = (FO, F) : 8" — Sy " such that

FvOHY=F'@w6), J=1,...,m+n. )

The superfunctions F” (u, 6) = Fy(y’) are called the coordinate representation of the
sm-morphism F = (F°, F). Formula (9) is frequently written in the following somewhat
incorrect but more intuitive form:

n
1
”v=FUO(”)+Zk1 Z F&Tak(u)(?“'/\m/\f)“", v=1,...,m',
k=2 'a

even

ﬂ—Zm Z Faﬂ,/\ak(u)@al/\”-/\Qa"’, ﬂ=1,...,n/.
odd

Proposition 2.3.4. Ler {x }mf" and {y'}72, *+"" be standard coordinate systems on S
and Sm,’"/, respectively. Let F = (F°, F) : SZ " S'&' "' be an sm-morphism with the
coordinate representation {F I (u, 9)}”’ '

Then for any superfunction g € S’” "'V, and any sequence X = {ay,...,ax} of

homogeneous elements of R™ @ R" one has (Fy )°(u) = g° o FO(u), and
Dk(Fvg)(u- ai, ..., ay)

_sz > o, P)D'g(F°w), D' F(u,ap)), ..., DI F(u,ap)), (10)

(Pl Pr)
FPi#0
where the sum runs over all nonempty partitions of the index set {1, ..., k}, and for each
uel,
m/+n/
D'V F(u,ap) = Z DPVF (u,ap)y; € R"" ®R".
J=1
Proof. Forallevenay, ..., a; € R"@{o} formula (10) is the multiple chain rule for Fréchet
manifolds (Proposition 2.2.1) applied to the function g° o FO(u).
For all odd ay, ..., ar € {o} & R™ formula (10) is equivalent to the standard Taylor

expansion for the pull-back of a superfunction [7,22,25,35]. Indeed, let

Fyg(u,6) = Fvg (u)+2k, Z Fygl,..q o™ A AO%,

[ ap=1
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be the coordinate expression for the superfunction Fy g, and {éa}gz | the standard basis in

R”". Then the coefficients of the representation above are given by

FV@,'(;\,(..AO,1 n)= f)kFVg(u; éal, e Q_ak)

k

1 ~

=Zz7 Y o X, P)D'g(FOw), Fp ), ..., fAMw), (11)
I=1 " (PP

P £6
where X = {éal, A éak} and for each subset P = {a1,...,a;}(¢; < -+ < ;) of the
index set {1, ..., k}
m'+n' _ _
Fpuy= Y DP'F'"u,0,....00)3s
J=1
m'+n’
=Y FI .5
J=1

The general case can be derived from formula (11) by differentiating in even directions.
0O

Formulae (10) and (11) suggest the following slightly modified description of an sm-
morphism.

Definition 2.3.4. Let {F’ (u, 0)}’,”:“]", be the coordinate representation of an sm-morphism

F=(F,F):8;" > Sg’/‘"'. For every k > 1 the kth infinitesimal component of F =
(F°, F) is defined by

F :UxS*R™"@®RY) 3 (u,a;...a5)
m'+n’
— Z DkFJ(u;al,...,ak))_fj cR™ oR".
J=1

The restriction of the map F; to U x A¥R" C U x SK(R™ @ R"):

m'+n'
FQiUX AR S u&...80 — Y D*Fluitr,... 805 eR" @R"
J=1

is called the kth exterior component of the sm-morphism F = (F 0, F).

As a simple consequence of the definition and Proposition 2.3.3 one has the
following:

Proposition 2.3.5. Let {x!}}*] and {y’ }’;’:]"/ be standard coordinate systems on Sy,
and 83”"/, respectively. Let ®° : R™ > U — V C R™ be a smooth map and ()i a
Sfamily of smooth maps
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) U x AFR" — R™ @ R",

linear and even in the second variable.
Then there exists a unique sm-morphism F = (FV, F) : S — Sy " with underlying
part FO = &0 and exterior components Fl = <Dk tk=1,...,n

Remark 2.3.2. The underlying part and the exterior components of an sm-morphism F
contain essentially the same data as the coordinate representation of F. The virtue of the
description in terms of exterior components is that it is independent of the choice of basis in
the model superspace and as we shall see in the Section 2.4 that it can be easily generalized
to the infinite-dimensional case. Here we shall consider composition of sm-morphisms is
this language. .,

Let G = (G% G)) : Sﬁ/’"/ - Sy " be another sm-morphism, and {zX }m " the

standard coordinate system on S{;’,N'"N. For the underlying parts one has
(GoF)°=G"c FO,

The coordinate representation of the composition G o F : §;;" — Swﬁ'"” is given by
(GoPX =(GoFwi") =Fv(Gw@E") =Gv(FH).

Calculating the RHS by formula (11) and using Definition 2.3.4 one gets the following
expression for the exterior components of the composition

(GoF)A(u Et, .o &)
—Zl' > o, P)GT(FOw), F @, £p)), ..., F (u,£R)). (12)

Py Py
P4
Let us note that the exterior components of the composition depend on the infinitesimal
components G;’ of G and therefore involve partial derivatives in even directions of the
exterior components F{". This property of composition of sm-morphisms is responsible for
most of the peculiar features of supergeometry. In particular, this is the reason for which
smooth structures and Fréchet spaces are indispensable.

2.4. BLK supermanifolds

Definition 2.4.1. A supermanifold modelled on the superspace R™ @& R” is a sheaf Ay =
(M, A(+)) of Z,-graded algebras on a Hausdorff topological space M such that for each
p € M there exist an open neighbourhood U of p, and an isomorphism of sheaves of
Z>-graded algebras

- (F F) AU —> S¢()(u)1

where Ay = (U, A(")) is the restriction of A4 to U, and 87, ¢0 ) is a superdomain, i.e.

@O(U) is an open subset of R™ and Sgo'(’u) (@), C*® () ® A(RM).
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Definition 2.4.2. The objects of the category SM are supermanifolds modelled on super-
spaces R™ @ R"” where m,n > 0.

For any two objects Ay, By € OSM the space of morphisms MSM consists of all
morphisms of sheaves of Z;-graded algebras. The composition of SM-morphisms is defined
as the composition of morphisms of sheaves.

Let Ay be a supermanifold. The collection {(Uy, Fy)}aecs of isomorphisms of sheaves

of Z,-graded algebras
Fo = (Fg, Fa) : Ay, — S,
such that {Uy},cs is an open cover of M is called an (m, n) — atlas on Ay.

Let {(Uy, Fy))aer be an atlas on a supermanifold .Ays. Then by Remark 2.3.1 the col-
lection { Fg}ael is a smooth atlas on M. By the same token different atlases on .4, lead
to compatible atlases and M acquires a unique smooth structure. M with this structure is
called the underlying manifold of Ay,.

One has the following global version of Proposition 2.3.1 [7,22,25,35].

Proposition 2.4.1. Let Ay, By be supermanifolds.

1. For any SM-morphism F = (F°, F) : Ay — By the underlying map F° : M — N
is smooth.

2. For any morphism A : B(N) — A(M) of Z,-graded algebras there exists a unique
SM-morphism F = (F°, F) : Ayy — By such that A = Fy.

Let F = (FO, F) : Ay — By be a morphism of supermanifolds and {(V,,, G))}yes
an atlas on By . Then there exsists an atlas {(Uy, Fy)}aes on Ay such that for all ¢ € 1
there exists (a nonnecessarily unique) &’ € J for which FO(U,) C V. The family of
sm-morphisms {Fy,}xes defined for each o € I by

Fooww =Gy oFoF,!

is called a representation of the morphism F = (F°,F) : Ay — By in the atlas
{(V,, ¥,)},es on By.

Proposition 2.4.2. Let {(U,, Fy)}acs be an (m, n)-atlas on a supermanifold Ay, and
{(V,,, Gy)}, ey an (m’, n')-atlas on a supermanifold By. Let { Fyy Yuc; be afamily of maps
such that:

. gm.n (m'.n"y ; -
1. foralla € I, Fyuy : SFO?(U,,) — SGg,(Va') is an sm-morphism,

2. forall o, B € I such that Uy N Ug # B one has
Fogr = Gg o G;,l oFyy o Fyo Fﬁ_]'

Then there exists a unique smooth morphism F = (F°, F) : Ay — By of supermani-
Jfolds such that { Foo' Yae1 is a representation of F in the atlas {(Vy,, G)}yey.
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Definition 2.4.3. Let {U,, ¢y }oer be an admissible atlas on a smooth manifold M of di-
mension m. Let { Fuglqcs be a collection of maps such that
1. forallael,Becl(@)={Becl:U,NUg#0d}

m.n m,n
Fop = (F°, Fap) : Sy uurwg — Spyivanug)
is an isomorphism of superdomains such that F" wp = PO ol

2. foralle € 1, Faa—1d5m(1u);
Patla

3. foralle, B,y € I'suchthat U, NUg NUy # B, Fgy o Foug = Fyy On S%(Uanuﬂmuy)
A collection { Fyg}acs With the properties stated above is called an (m, n)-cocycle of tran-
sition sm-morphisms over the atlas {Uy, ¢ }oes on M.

Two cocycles {F,, ﬂ,}a/e 1 {F,), P }a”e v of transition sm-morphisms on M are said to be
compatible if there exists a third one {Fyg}qcs such that

{potarer U{ogtarer Cl{0alaer,
{Fé/ﬂ/}a’el’ U {F,;///ﬂ//}a”el” C {Faﬂ}ael,

as sets of maps.

Proposition 2.4.3. Let {Fyglucs be an (m, n)-cocyle of transition sm-morphisms on M.
Then there exists a unique supermanifold Ay with the underlying manifold M and with the
(m, n)-atlas {(Uy, Fy)}qer such that

Fup=FgoF, |F0(U .

foralla € 1,8 € I(a).
Compatible (m, n)-cocycles of transition sm-morphisms on M lead by the construction
above to the same supermanifold Apy.

The supermanifold .4 and the (m, n)-atlas {(U«, Fy)}qcr of the proposition above are
said to be generated by the (m, n)-cocycle { Foglaci.

3. Model category
3.1. Objects

Let X be a vector space. The group-like Hopf algebra G(X) of X is the free vector space
RX of X (i.e. the vector space over R containing X as a basis) endowed with the trivial
Zy & 7 grading

>0 {o} otherwise,
i=0,1

and with the Hopf algebra structure given by
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Mcx®y)=x+y, ug(l) =o,
Agx)=x®x, eglx)=1, sgx)=—x
forall x, y € X (+, o, — stand for the addition, the zero vector, and the inverse in the vector

space X). One can easily verify that G (X) is a pointed bigraded commutative cocommutative
Hopf algebra. The direct sum decomposition into irreducible components takes the form

G(X) = (PRx,
xeX

where Rx is a one-dimensional subcoalgebra generated by the group-like elementx € X C
G(X). Forevery subset U C X the free vector space RU is a bigraded subcoalgebra of RX,

RU = P Rx C RX.
xel

RU with the induced bigraded coalgebra structure is called the group-like coalgebra of U.

Definition 3.1.1. Let X = Xy @ X be a graded space. The tensor product
Dx = G(Xo) ® S(X)

of the group-like Hopf algebra G(Xo) of X¢ and the symmetric algebra S(X) of X is called
the Hopf algebra of the graded space X.

The Hopf algebra structure on Dy is given by

My(u@)Q wRB))=Ww+w RQa- B,

up(l) =o0®1,

Ay @ a) = Z(u Qo)) ® (u ® (),
(a)

eau @a) =ec @ e(u @ a) = e(a),

s ®@a) =56 Qs(u @ o) = (—u) @ s(a),

forall u, w € Xo; a, B € S(X), where ¢ is given by Proposition 2.1.2, and s by Remark
2.1.4. By definition of G(X¢) and Theorem 2.1.1, Dy is a pointed bigraded commutative
cocommutative Hopf algebra. Since G(Xj) is generated by group-like eiements and S(X)
is pointed irreducible one has the following decomposition into irreducible components:

Dy = @ Dx,,

ueXg

where Dx, = Ru @ S(X) = S(X) for all u € Xo.

The subcoalgebra Dy, is a strictly bigraded Hopf subalgebra of Dx. It acts on Dx by
the left and right multiplication. In particular using the identification Dy, = S(X) one gets
the right action of S(X) on Dy,

R:Dx®@SX)2u®@a)®B — (UR®«a) - B=u®u«-B e Dx.
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By construction each irreducible component is stable with respectto R and forevery u € Xg
the map

R,:SX)s2a— u®1l) -aeDy,

is an isomorphism of bigraded coalgebras. For the sake of simplicity we will write « for the
group like element ¥ ® 1 € Dy. With this convention Xo C Dy and u ® @ = u - « for all
u®« € Dy.

Definition 3.1.2. Let Dy be the Hopf algebra of a graded space X = X¢ @ Xj,and U a
subset of X. The subcoalgebra Dx(U) C Dx

Dx(U) = P Dx,.

uel

is called the subcoalgebra over U.

In the case of a graded Fréchet space, i.e. a topological direct sum X = Xo & X; of
Fréchet spaces, the subcoalgebra Dy (U) over an open subset U C Xp will be called an
open subcoalgebra of Dy.

By definition, for any U C X the subcoalgebra Dx (U) over U is the tensor product of
bigraded coalgebras Dx(U) = G(U) ® S(X). As the direct sum of irreducible components
of Dy it is stable under the S(X) right action.

3.2. Morphisms

Let X, Y be graded spaces and Dx (U), Dy (V) subcoalgebras over U C Xp and V C
Yy, respectively. Let @ : Dx(U) — Dy (V) be a morphism of graded coalgebras. ¢ sends
group-like elements into group-like elements and irreducible components into irreducible
ones. It follows that @ is uniquely determined by the map

UxSX)s2u®a—> du®a)eV x SY), (13)

where the cartesian products U x S(X),V x S(Y) are identified with the subsets of
Dx(U), Dy (V) by the inclusions

UxSX)s>u,a0) > u®a=u-acDx),
UxSXY)>wu,B)— u®pB=uv-pe&Dy(V).

Note that the map (13) can be regarded as the family {®,},cr; of Z;-graded coalgebra
morphisms

®,:Dx,2u-a—> Pu-a) € Dxow-

Since each irreducible component of Dy (V) is isomorphic to the bigraded coalgebra S(Y)
the universal property of the symmetric Hopf algebra can be used for a more detailed
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description of @. In order to study various properties of graded coalgebra morphisms it is
covenient to introduce the following definition.

Definition 3.2.1. Let X, Y be Z,-graded spaces and Dy (U), Dy (V) subcoalgebras over
U C Xpand V C Yp, respectively. Denoteby : VX S(Y) — S(Y),resp.wry : S(Y) > Y
the canonical projections on the second factor, resp. on § WY)y=7Y.Letd : Dx(U) —
Dy (V) be a morphism of Z;-graded coalgebras. The maps

¢O:U3u—>¢(u)€V,
ST UXSX)t > u,B) —> nyon(®u-p)) ey,

SN UXAXDT 3w, y) — ayon(@u-y)) ey

and called the underlying, the infinitesimal, and the exterior parts of @, respectively.
For every k > 1, the restrictions

cD,:r:UxXx-«~xXa(u,al,...,ak)—»nyon(d?(u-al---ak))eY,
~——
k
S UxXix--xX1dWé&,....8) —ayon(@u-&§ &) eY
N———
k

are called the kth infinitesimal and the kth exterior components of @, respectively.

For all & > 1 the infinitesimal and the exterior components of a Z,-graded coalge-
bra morphism are totally symmetric and even. By the universal property of the symmet-
ric tensor product the infinitesimal fD,j and the exterior ;' components uniquely extend
to maps on U x SK(X) and U x A¥(X), respectively, which are linear and even in the
second variable. For the sake of simplicity the same symbols will be used for the com-
ponents and for their extensions above. Note that the infinitesimal @7, and the exterior
®" parts of @ are uniquely determined by their components, {615[ }i>1, and {615,;\};(21,
respectively.

The following proposition is a consequence of the universal property of the symmetric
algebra with respect to the coalgebra morphisms (Theorem 2.1.2). It asserts that a morphism
@ : Dx(U) = Dy(V) of Zs-graded coalgebras is uniquely determined by its underlying
and infinitesimal parts.

Proposition 3.2.1. Let X, Y be Z,-graded spaces and Dx (U), Dy (V) subcoalgebras over
U C Xoand V C Yy, respectively. Let ¢+ : U x S(X)T — Y be a morphism of Z,-graded
spaces in the second variable, and ¢ : U — V an arbitrary map.

Then there exists a unique morphism @ : Dx(U) — Dy(V) of Z,-graded coalgebras
such that ° = ¢, and d+ = ¢+

Moreover, for everyu € U, a € S(X)

D(u,a) = du) - xexp . (@), (14)
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where

=0 () SX)T — 7,
1
xexp ey (@) = kzo du @),
&) = us(yy o es(x0y (@),
¢;’k(cx) Eqb:' on+*~-~*¢;' ont(a), k=>1.

k

at . S(X) - S(X)t denotes the canonical projection, and x is the convolution in
Hom(Dy,, S(X)).

It follows that a Z,-graded coalgebra morphism @ : Dx(U) — Dy (V) is uniquely
determined by the underlying map ®° and the infinitesimal components {¢2’ }i>1. In the
following definition we introduce the notion of smooth coalgebra morphism by imposing
some additional requirements on the maps &9, {dblj be>1.

Definition 3.2.2. Let X, Y be Z;-graded Fréchet spaces and Dx (U), Dy (V) open subcoal-
gebras of Dy and Dy, respectively.
A morphism @ : Dx(U) — Dy (V) of Z,-graded coalgebras is said to be smooth if the
following conditions are stasified:
1. The underlying part ®° : U — V is a continuous map and for all x € X, u € U, the
directional derivative D' ®%(u; x) exists.
2. For every k > 1, the kth infinitesimal component

d’,j:UxXx---xX—»Y
————
k

is jointly continuous with respect to the cartesian product topology on U x X ** and the
directional derivatives D! <D,f (u, ay, ..., ax; x) with respect to the first variable exist for
allx € Xo,ue U, q; € X.

3. Forevery u € U, x € Xy, a; € X the following relations hold:

D'®%u; x) = &7 (u, 1), (15)

qubzr(u,al, e g X) = ¢,j'+l(u,a1, ey AR, X). (16)

Proposition 3.2.2. Let @ : Dx(U) — Dy (V) be a smooth morphism of Z,-graded coal-
gebras and {x; }§=1 an arbitrary sequence of elements of Xo.

1. The underlying part ®° : U — V of ® is a smooth map and for every u € U the lth
order partial derivatives satisfy the relation

D'ow; xy, ..., x) = ®F (u,x1,...,x%). (17
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2. For every k > 1 the kth exterior component @} of ® is a smooth map. For everyu € U,
& € X\ the lth order partial derivatives with respect to the first variable are given by
the formula

D' u, &y, .. b xn, . x) = OF w61, b X, LX), (18)

3. For every k < 1 the kth infinitesimal component ¢,j' of ® is a smooth map. For every
u € U, a; € X the lth order partial derivatives satisfy the relation

DICD:(u,a], e AR Xy ., X)) = <D:+l(u,a1,...,ak,x1, ey X1 (19)

Proof.

1. By condition 1 of Definition 3.2.2 the directional derivative D'®%(u; x) exists for all
u € U and x € X;. By condition 3 one gets relation (17) for = 1. Since by condition 2
the first component of @ is jointly continuous on U x X sois D'®%on U x X, hence
@is C!. The C! smoothness and relation (17) for arbitrary / follow from induction on /.

2. Letus fix k > 1. Repeating the reasoning above one gets that @ is C ! separately in the
first variable and relation (18) holds for / = 1. But & is linear in the second variable
and by condition 2 of Definition 3.2.2, jointly continuous. It follows [16] that @[ is
jointly C'. The induction on ! yields the C!-smoothness and relation (18) for arbitrary
x; € Xo and for all /.

3. It is a straightforward consequence of conditions 1 and 2. |

Let Dx(U), Dy (V) be open subcoalgebras. For ¥ > 1 and X 5% {0} we introduce the
space C(Dx(U), Dy(V)) of all smooth maps
¢r :Ux Xy x---xX| —7,
—_—
k

which are k-linear, totally symmetric, and even in the second variable. Note that in the
definition above X is regarded as a purely odd graded Fréchet space {0} X ;. Thus the maps
¢y are totally antisymmetric in the usual sense. Let Cé\ (Dx(U),Dy(V)) = C®(U, V) be
the space of all smooth maps from the open subset U C Xy to V C Yy and

CADx W), Dy(V) = X CFDx (V). Dy (V).

For X| = {0} we put C*(Dx (U), Dy (V)) = C*(U, V).

As a consequence of Propositions 3.2.1 and 3.2.2 one gets the following characterisation
of the space Mor(Dx (U), Dy (V)) of all smooth morphisms @ : Dx(U) — Dy (V) of
open subcoalgebras

Theorem 3.2.1, The map
Mor(Dx (U), Dy(V)) > @ — (@°, @1, 05,...) € C"(Dx(U), Dy (V)

is bijective.
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In order to complete the construction of the model category we shall show that the
composition of smooth coalgebra morphisms is smooth. For this purpose we start with the
description of the composition of Z;-graded coalgebra morphisms in terms of components.

Proposition 3.2.3. Let @ : Dx(U) — Dy (V), ¥ : Dy (V) — Dz (W) be morphisms of
Z,-graded coalgebras. The underlying part (¥ o @) and the kth infinitesimal components
W o di),j' of the Z;-graded coalgebra morphism W o ®@ : Dx(U) — Dz(W) are given by

(W o) =w0p?

and
F
Wod)fwar,...,a)=) = D oXP)
i=1 {Pyoes P;}
|P;|>0
<@ (@), & (. ap), ..., B w,ap)),  (20)
where the sum is over all nonempty partitions P = { P, ..., P;} of the index set {1, ..., k}

and the notation of Remark 2.1.2 is used.

Proof. According to Definition 3.2.1 the kth infinitesimal component of ¥ o @ is given by
4 oq)),j(u,al,...,ak) =ayomoW¥Wo®u-aj---ag).

Representing @ in the formula above in terms of its infinitesimal components (Proposition
3.2.1) and using explicit form of comultiplication in S(X) given in Proposition 2.1.3 one
gets the result required. a

Theorem 3.2.2. Let X, Y, Z be Z;-graded Fréchet spaces and Dx(U), Dy (V), Dz(W)
open subcoalgebras of Dx , Dy and Dz, respectively

If® : Dx(U) »> Dy(V), ¥ : Dy(V) — Dz(W) are smooth morphisms of Z,-graded
coalgebras so is their composition ¥V o @ : Dx(U) = Dz(W).

The underlying part of W o @ is the composition of underlying parts (¥ o P = 0ol
The kth exterior component of W o @ is given by

k
1
W o)W, b1,....60=) = Y oXP)
izll'(Pl S)
| P; 1>

XU @), By, (. Ep), .. Py (. ER)), (1)

where the sum is over all nonempty partitions { Py, ..., P;} of the index set {1, ..., k}.

Proof. By Proposition 3.2.2 ¥°, &9 are smooth maps so is their composition (¥ o o) =
w96 @0, By Proposition 3.2.3 the kth infinitesimal component (¥ o a));cF can be expressed
as a finite sum of compositions ¥,” o (<Df1;1| X +ee X (D!JISI_‘) o P, where
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P UxX*>Ww,a,...,a)

— (u,qp)) X - X (u,qp,)) € )l( U x Xx‘le).
j=l1

Since P is smooth with respect to the cartesian pproduct topology the smoothness of
o ':b)k+ follows from the smoothness of lIJi+ and d)j'.

It remains to check condition 3 of Definition 3.2.2. Using relation (15) for w9 and ¢°
and (20) for k = 1 one gets

DY ¥ o &)(u; x) = D' (@°w); D' u; x))
=¥ (@°w), B} (u; X)) = (W o ®) | (u, x),

for all u € U, x € X¢. Hence relation (15) of Definition 3.2.2 is satisfied.
Differentiating expression (20) for the kth infinitesimal component (¥ o q)),': and using
relations (15) and (16) for components of ¥ and & one has

D' o) (u,ay,..., a5 x)

x | D' (@), D, (w,apy), ..., Df, (u, ap); D' Ow; x))

i
+ D T @W), &% (wap), ..., D' (. apix), . P (. ap))
j=1
k+1

1
:Z; T Z o (X, P)

P Pi_y )}
1P;1>0

x W (@Ow), o (w,ap,), ..., B (. ap), B (u, X))

i
x Zl[/i+(¢0(u), ¢|*1;1’(u,apl), e ¢1+Pj|+1(u, ap;,x), ..., ¢f}i|(u,aﬂ))
j=1
k+1 1
=5 D oW, Q¥T@°w, P, ag)), .., Pip, (1, ag))

i=1 " (@10}
1Q;1>0

= (lp ° ¢)2_+1(u7 al,y ..., Ak, -x)’
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where P = {P1, ..., P;}and Q = {Q;, ..., Q;} are partitions of the index sets {1, ..., k}
and {1, ..., k + 1}, respectively, and X' = {ay, ..., axy1}, axsy = x.
Formula (21) is a special case of (20). 0O

3.3. Direct product

The considerations of Sections 3.1 and 3.2 leads to the following definition of the model
category.

Definition 3.3.1. The objects of the model category sc of smooth graded coalgebras are
open subcoalgebras Dy () where X runs over the category of graded Fréchet spaces and
U over all open subsets of the even part X of a graded Fréchet space X.

For any two objects Dx (U), Dy (V) € Osc the space of morphisms Msc(Dx (U), Dy (V))
consists of all smooth coalgebra morphisms @ : Dx (U) — Dy (V).

The composition of morphisms in sc is defined as a composition of coalgebra maps.

An isomorphism in the category sc is called a diffeomorphism of open subcoalgebras.

We shall show that in the model category defined above the direct product exists. We start
with the corresponding result for the category of Z;-graded cocommutative coalgebras [40].

Theorem 3.3.1. Let (C, Ac, ec), (D, Ap, €p) be Z-graded cocommuiative coalgebras.
Define the maps

ac:C®D>3c®d — epd)-cel,

p:COD>3c®d —> ec(c)-d eD.
Then ¢, wp are Z>-graded coalgebra morphisms and for every Z,-graded cocommutative
coalgebra (£, Ag, ep) and morphisms of Z,-graded coalgebras ®¢ : £ — C, and ®p :

E — D, there exists a unique morphism of Z;-graded coalgebras ® : £ — C @ D making
the diagram

(22)

o
9

S

B
i
[§]

7N,

- ®

commute. The Z,-graded coalgebra morphism @ is given by @ = (P¢ ® P D)o Ag.

Definition 3.3.2. Let Dx (U), Dy (V) € Osc. The tensor product Dy (U) ® Dy (V) € Osc

is defined as follows:

1. With respect to the coalgebra structure Dx (U) ® Dy (V) is the tensor product of graded
cocommutative coalgebras. ‘
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2. With respect to the topological structure Dx (U) ® Dy (V) is identified with an open
subcoalgebra of Dygy by the canonical isomorphism

Dx(U) ® Dy(V) — Dxer(U x V)

where the direct sum topologyon X & Y = (X @ Yp) @ (X1 & Y}) is assumed.

Calculating infinitesimal components and checking the conditions of Definition 3.2.2 by
explicit calculation of directional derivatives one gets the following:

Proposition 3.3.1.
1. Let @ : Dx(U)y —»> Dy(V), P’ : Dx(UYy » Dy (V') be smooth morphisms of open
subcoalgebras. Then the tensor product of Z;-graded coalgebra morphisms

PR Dx(NRDx(UNosmem
> &(m) ® &'(m') € Dy (V) ® Dy(V')

is smooth.
2. Let ey, ey be counits of open subcoalgebras Dx(U), and Dy(V), respectively. Then
the maps

Py =1Qc¢y : Dx(U) ® Dy(V) — Dx(U),
Py=ey ®1:Dx(U)®Dy(V) — Dy(V)
are smooth morphisms of Z»-graded coalgebras.

3. The comultiplication A : Dy (U) — Dx(U)®Dx (U) of an open subcoalgebra Dx (U)
is a smooth morhism of Z,-graded coalgebras.

Remark 3.3.1. The underlying parts and the exterior components of smooth Z;y-graded
coalgebra morphisms of the proposition above are given by

(@@ 9", u) = (@°w), 2°w),
(@ QD) ((u,u),0,06],....6,®6)
=@ W, 01,...,60) DD, W, 0[,...,00);
(Py)°(u, v) = u,
(PY)T((u,v), 0 ®n) =0,
(PO 0), 0, D1y G D) =0, k> 2;
A%u) = (u, w),
AT (u,0) =086,
Af(u,@l,...,ek)=0, k>2.

Theorem 3.3.2. (Dx(U)® Dy(V), Py, Pv) is the direct product in the model category of
smooth Z,-graded coalgebras.
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Proof. By Proposition 3.3.1 Py, Py are sc-morphisms. By Theorem 3.3.1 for any pair
of smooth morphisms of Z,-graded coalgebras @y : Dz(W) — Dyx(U), and &y :
Dz(W) — Dy(V), the map & = ¢y ® Py o Aw is the unique Z;-graded coalgebra
morphism for which the diagram

Dx(U) ® Dy(V)
Py f K
Dx(U) @ Dy (V)
oy % AI
Dz(W)

commutes. By Proposition 3.3.1 @ is a composition of smooth morphisms of Z;-graded
coalgebras. Hence @ is smooth by Theorem 3.2.2. a

Remark 3.3.2. The underlying part and the exterior components of the smooth morphism
@ = Py x Py o Ay are given by

?O(w) = (&) (w), &Y (w)),
db,f(w, O,...,0) = (dbu),?(w, 01,...,0L) D (<DV),’{\(w, 01,...,6).

3.4. Subcategories scqg and sc=

In this section we shall show that the model category fm of Fréchet manifolds and the
model category sm of BLK supermanifolds are both full subcategories of the model category
sc of smooth coalgebras. This justifies introduction of sc as an extension of fm and sm.

We define the category sep of even open coalgebras as the full subcategory of sc consisting
of all objects of the form Dy, g0y (U) and all sc-morphisms between them. Similarly, the cat-
egory sc* of finite-dimensional open coalgebras is defined as the full subcategory of sc con-
sisting of all objects of the form Drm gy (U) with arbitrary m, n > 0, and all se-morphisms
between them. For notational convenience we shall introduce simplified symbols D(U) =
Dxooi01(U) and Dy, n(U) = Drmgre (U) for objects of scg and sc=, respectively. Note
that by definition, for all D(U), D(V) € Oscg and Dy, n(U), Dy (V) € Osc™ one has

Mseo(D(U), D(V)) = Mse(D(U), D(V)),
Msc™ (D n(U), Dy ' (V)) = MSC(Din n (U), Dy (V).

By Theorem 3.3.2 both scg and sc= inherit the direct product from sc.
As a consequence of Theorem 3.2.1 and 3.2.2 one has the following.

Proposition 3.4.1. The correspondence

Oscy 2 D(U) — U € Ofm,
Mseo(D(U), D(V)) > & — @° e Mfm(U, V) (23)

is an equivalence of categories.
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It follows that the model category fm of Fréchet manifolds can be identified with the full
subcategory scg of the category sc of open coalgebras.

Remark 3.4.1. The inverse to the correspondence (23) is given by

Ofm > U — D(U) € Oscy,
Mfm(U, V) 3 ¢ —> ¢, € Msco(D(U), D(V)),
where ¢, is a unique smooth morphism of coalgebras such that (¢,)® = ¢. Using formula

(1) of Proposition 2.1.3 for comultiplication in S(X) and formulae (14) of Proposition 3.2.1
and (17) of Proposition 3.2.2 one gets foru € U, xq,...,x; € X,

Ou(u - x; - xp)

k

1

=25 2 9@ D™Mp@ixp) - DPgu;xp), (24)
i=1 " (P]...P;}
|P; >0

where the sum runs over all nonempty {-partitions of the index set {1, ..., k}.

Let us now compare D(U) to the dual coalgebra (see Appendix A.5) C*°(U)° of the
algebra C®°(U) of smooth real-valued functions on an open subset U of a Fréchet space X.
For this purpose we introduce the pairing

(LY :DUYxC®WU) — R
defined, forallu € U, x,...,x; € X, and f € C*°(U) by

(u, flu = fw),
(-x1-xi, Hu=d fluxi, ..., x). (25)

Proposition 3.4.2. Let U be an open subset of a Fréchet space X, (D(U), Ay, ey) the

even open coalgebra, and C* (U) the algebra of smooth functions on U.
1. Forall f, g € C*(U), w € D(U),

(, f- gl =Y _loa), lulee, e,
(w)

(@, 1)y = ey(w),

where Ayw = Z(w) w() ® w(2).
2. Let ¢ : U — V be a smooth map of open subsets of Fréchet spaces. Then

<¢*(D, f)v = <(D, f O¢)U7
forallw € D(U), f € C*®(V).
The first part follows from the multiple Leibnitz rule (Proposition 2.2.2) and the explicit

formula for the comultiplication in S(X) (Proposition 2.1.3). The second part is a straight-
forward consequence of the multiple chain rule (Proposition 2.2.1) and formula (24) for ¢,.
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Proposition 3.4.3. With the notation of Proposition 3.4.2 the map
DWU) 3 a — {a,.) € CZW)° (26)
is an injective morphism of Z,-graded coalgebras.

Proof. By Propositions 3.4.2 and2.5.3forallw € D(U), {w, .)y € C*(U)°. By Definition
2.5.1 of dual coalgebra and Proposition 3.4.2 (26) is a morphism of Z;-graded coalgebras.
Using the Hahn-Banach theorem for Fréchet spaces one can show that the pairing (25) is
nonsingular which implies the injectivity of the map (26). m]

Remark 3.4.2. The image of the map (26) is a subcoalgebra of C°°(U)° consisting of
all finite linear combinations of evaluations of directional derivatives of arbitrary order.
This subcoalgebra will be called the coalgebra of Dirac distributions on U. For infinite-
dimensional Fréchet spaces this is a proper subcoalgebra of C*(U)°.

We shall Pr(?ceed to the model category of BLK supermanifolds. Let F = (F*, F) :
S;" — Sy " be an sm-morphism and {F,}}_, its exterior components. The collection
{FO, F{,..., F}'} can be regarded as a point in the space C"(Dp n(U), Dy w(V)). By
Theorem 3.2.1 there exists a unique smooth Z,-graded coalgebra map with the underlying
part FO and with the exterior components { F{*}7_,. We denote this map by F.

Let G — (G G): S(,"/’"/ — Swﬂ’"” be another sm-morphism. Then by the above
construction one has a smooth Z,-graded coalgebra map G : Dy (V) = Dy (W)
Comparing formula (12) for the exterior components of composition of sm-morphisms
(Remark 2.3.2) with the corresponding one (21) for the composition of smooth Z;-graded
coalgebra morphisms (Theorem 3.2.2) one gets (G o F)x = G4 o Fi.

Proposition 3.4.4. The correspondence

Osm 5 §;;" —> Dy n(U) € Osc™,

Msm(S™", 8"") 5 F = (F°, F) —> Fy € Msc* (D n(U), Do (V))  (27)
is an equivalence of cotegories.
Let S™"(U) be the Z,-graded algebra of superfunctions of a superdomain S;;", and
(o Dn(U) x S™M(U) — R
a pairing defined by

u, fuv = fPw),
w-ar--ap, flu =D fusan,... a0 (28)

forallu € U,ay,...,ax € R @ R", and f € S™"(U).
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As a consequence of the multiple Leibnitz rule (Proposition 2.3.3) and the multiple
chain rule (Proposition 2.3.5) for superfunctions one has the following sm-counterpart of
Proposition 3.4.2.

Proposition 3.4.5. Let S™"(U) be the Z,-graded algebra of superfunctions of a superdo-
main S;"", and (D ,(U), Ay, €u) the open coalgebra Dy n(U).
1. Forall f,g € S™" (U)o US™"(U)1, w € Dy n(U),

(o, f-glu = Y _(=DY1*0laq), fli (o), g)u,
(@)
(w, I}y = ey(w),

where Ayw = Z(w) w1 ® w).
2. Let F = (F°, F): S — 8" be an sm-morphism. Then

{(Fyo, fiv = (o, Fv fiu
forallw € Dy ,(U), f € 8™ (V).

Proposition 3.4.6. With the notation of Proposition 3.4.5 the map
DunU)3 0 — (w,.) € S™"(U)° (29)
is an isomorphism of Z;-graded coalgebras.

Proof. Since the pairing (28) is nonsingular the map (29) is injective. By Proposition 3.4.5
it is a morphism of Z»-graded coalgebras. In particular it preserves the coradical filtration

Dinn@u = | Dnn )P
k>0
of the irreducible components D,, ,(U),,u € U. Hence, for all u € U, k > 0 one has the
injective maps
D nHP 30 — (@,.) € S™"(U)WP, (30)
By Proposition A.5.6 S™" Ok = (S™"(U)/I¥*1) and therefore
dim(Dy, » (U)P) = dim(S™"(U)°®)) < +00.

It follows that the maps (30) are surjective for all k > 0, and u € U, and so is the map (29).
O

Remark 3.4.3. By Proposition 3.4.6 the open coalgebra D,, ,(U) can be identified with
the dual coalgebra of the algebra of superfunctions S (U). The coalgebra of Dirac dis-
tributions on the superdomain Sy;"" is defined as coalgebra of all finite linear combinations
of evaluations of differentiations of superfunctions. This coalgebra coincides with the dual
coalgebra S™”(U)° [19].
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3.5. Superfunctions

Propositions 3.4.1 and 3.4.3 of Section 3.4 provide characterisation of even open coal-
gebras as objects dual to algebras of smooth functions on open subsets of Fréchet spaces.
Similarly by Propositions 3.4.4 and 3.4.6 finite-dimensional open coalgebras are dual coal-
gebras to algebras of superfunctions on superdomains. Using this duality smooth functions
in both cases can be regarded as linear functionals on corresponding coalgebras. This leads
to the following definition of superfunction in general case.

Definition 3.5.1. Let Dx(U) be an open coalgebra. A linear functional f € Dx(U)' is
called a superfunction on Dy (U) if the following conditions are staisfied:
1. For each k > 0 the function

e UxXX---xX3W,a,...,aq0) — {fiu-a1---a) eR
e
k

is jointly continuous with respect to the cartesian product topology on U x X *¥,
2. Foreachk > Qandforall x € Xo,u € U, and ay, ..., a; € X the partial derivative

Dx(f,u-aln-ak):lir% (f,(u+6x)-a1-~-t:k)—(f,u-al‘--ak)

exists.
3. Foreachk >0Oandforallx € Xg,u €¢ U,and ay,...,a;, € X

D (fiu-ay--ar)=(fiu-ay---a-x).

Remark 3.5.1. Let Dy (U)’ be the full algebraic dual of an open coalgebra Dy (U). Let us
consider the inclusion of Z;-graded spaces

i : Dx(U) ® Dx(U) — (Dx(U) ® Dx(U))

defined for each f, g € Dx(U), U Dx(U)}, and e, B, € Dx (U)o U Dx(U) by
(i(f ®8).a®p) = (~DE1(f,a)(g, B).

Dx (U) has the structure of Z,-graded commutative algebra with multiplication
M : Dx(U) ® Dx(UY —> (Dx(U) ® Dx(U))’ = Dx(UY',

and unit u : R ——> Dx(U)'.
The explicit formula for the product f - g reads

(fogou-ai-—a)y= Y o@XPU-D¥"Nf u ap)ig u-ap), @
P=(P, P}
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where u € U,ay,...,a; € X, the sum runs over all two-partitions of the index set
{1, ..., k}, and the notation of Remark 2.1.2 is used. The unit 1 = u(1) is given by

Auy=1, du-a---a;)=0

forallu e U,ay,...,a; € X.
Differentiating the formulae above with respect to the variable u and checking the con-
ditions of Definition 3.5.1 one gets the following.

Propeosition 3.5.1. The subspace Dx(U)" C Dx(U)' consisting of all superfunctions on
an open coalgebra Dx (U) is a Z»-graded subalgebra of Dx (U)'.

Definition 3.5.2. Let f be a superfunction on an open coalgebra Dx (U). The map
fO:Usu— (fu)eR

is called the underlying part of the superfunction f. For each ¥ > 1 the kth exterior
component f; of the superfunction f is defined as a map

fOUXX x--xX123W&....&) — (ffu-& &) eR.
—_—————
k

It follows from Definition 3.5.1 that the underlying part and the exterior components of
a superfunction f on an open coalgebra Dy (U) are smooth functionson U and U x X xk,
respectively. Forallu € U; xy, ..., xx € Xo; &1, ..., & € X, one has

(fou-61---& x¢-x1) =Dy - Dy (fou-8--- &),

where D, denotes the partial derivative with respect to u-variable in the direction x € Xj.
This implies that the superfunction is uniquely determined by f°, and { ATSSE
Let Dx (U) be an open coalgebra and

R:Dx(U)yxSX)>(w,u-a) > u-a-weDxU)

the right action of the Hopf algebra S(X) on Dx (U) introduced in Section 3.1. For each
w € S(X) one has a linear map R, : Dx(U) —> Dx(U)’ given by

(Ryfiu-a)=(f Rou-@) = (fu-a o)

forallu € U, ¢ € S(X). One can easily check that if f € Dx(U) is a superfunction so is
R,f.

Definition 3.5.3. Let f be a superfunction on an open coalgebra Dx (U). For each w €
S(X) the superfunction D, f = R, f is called the derivative of f in the direction w.

The following proposition says that the notions of superfunction on open co-
algebra (Definition 3.5.1) and its derivative (Definition.3.5.3) are generalisations of the
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corresponding notions both in the smooth Fréchet geometry and in the finite-dimensional
BLK supergeometry.

Proposition 3.5.2.
1. Let X = Xo &® {0} be a purely even Z,-graded Fréchet space. Let U be an open subset
of Xo and let

Yy DWW xC®WU) — R
be the pairing of Proposition 3.4.2. Then the map
C*W) > f — f = flu e Dx)"

is an isomorphism of Z-graded algebras. Moreover, forallu € U, x|, ..., x; € X one
has

Dyyoxi f ) = D¥fu, x1, ..., x).

2. Let X = R™ & R" be a finite-dimensional Z,-graded Fréchet space. Let U be an open
subset of R™ and

(U : Dmn(U) x ™" (U) — R.
the pairing of Proposition 3.4.5. Then the map
S™MU) > f — f={(, flu e Dx()"

is an isomorphism of Z,-graded algebras. Moreover, forallu € U, ay,...,a; € R @
R" one has

Day.ap f(u,0) = DX f(u,0;ay,...,a).

Remark 3.5.2. Let @ : Dx(U) —> Dy (V) be a smooth morphism of open coalgebras.
Then the dual map @' : Dy (V)Y —> Dx(U) is a morphism of Z»-graded algebras. Let f
be a superfunction on Dy(V).Forallu € U, ay, ..., a; € X one has

(@' fiu-ar--ar) = (f, du-ar---a))

k
1
=25 2 CXPUL W P (uap) - B ap)). (32)
i=1 " (Pl
1P;]>0
where the sum runs over all nonempty partitions of the index set {1, .. ., k}. Following the

proof of Theorem 3.2.2 one can show that the functional @’ f is a superfunction on Dx (U).
It follows that ¢’ defines a morphism of Z;-graded algebras

ST Dy (V) > f — &' f e Dx(O)"

The superfunction @7 f = @’ f is called the pull-back of the superfunction f.
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Differentiating formulae (31) and (32) according to Definition 3.5.3 one gets the muitipie
Leibnitz and the chain rules for superfunctions.

Propesition 3.5.3. Let Dx(U)", Dy (V)" be algebras of superfunctions on open coalge-
bras Dx(U), and Dy (V), respectively. Let @ : Dx(U) —> Dy (V) be a smooth morphisms
of open coalgebras.

1. Foreach f,g € Dx(U)Y  and ay,...,a; € X

Doa(f )= . o Py=DVnID,, 5. D,, g, (33)
P={P1, P}

where the sum runs over all two-partitions of the index set {1, . ..k} and the convention
Dy f = D1 f = f is used.
2. Foreachg € Dy(V)  anday,...,a € X

(Day ey @*8)° ()

k
1
=25 2 X P)g %W @T(wap) - T (wap)), (34)
I=1 " (Py...P)
P #0
where the sum runs over all nonempty partitions of the index set {1, ..., k}.

Let Dx (U) be an open coalgebra. For each pair of open subsets U” C U’ C U we define
the restriction map

Quwyr : Dx(UY* — Dx (U

as dual to the inclusion Dx (U”) C Dx (U’). The assignment for each open subset U’ C U
the Z,-graded algebra Dx (U")" of superfunctions with the restriction maps above defines
a sheaf D), = (U, Dx(.)") of Z»-graded algebras.

Let  : Dx(U) — Dy (V) be a smooth morphism of open coalgebras. For each open
V’ C V the restriction

Py : Dx (@ (V) 5 4 —> @) € Dy (V')
1s a smooth morphism of open coalgebras. Then the family of dual maps

@7, : Dy (V)" —> Dx(@° (V)"
defines the morphism of sheaves of Z,-graded algebras &* = (¢°, &*) : D)} — D).
One has the following.
Proposition 3.5.4. The correspondence

Dx(U) — Dy = (U, Dx ()",

& — o* = (97, 0%),

is a covariant functor from the model category sc of open coalgebras to the category of
sheavs of Z,-graded algebras.
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The functor above restricted to the subcategory sc= of finite-dimensional open coalgebras
vields an inverse to the functor of Proposition 3.4.4,

4. Smooth coalgebras
4.1. Category of smooth coalgebras

Definition 4.1.1. Let M be a pointed Z,-graded cocommutative coalgebra and X = Xo &
X1 a Z;-graded Fréchet space. An X-atlas on M is a collection {(Uy, ®o)}aer Of charts
(Uq, Py ) satisfying the foliowing conditions:

1. The collection {U, }qc; is a covering of the set M of group-like elements of M

M=UU0,.

ael

2. Foreach « € I, let M(U,) be a subcoalgebra of M given by

MUy = P M,,
pely

where M), denotes the irreducible components of M containing p € U,. Each @, is
an isomorphisms of Z;-graded coalgebras

@y : M(Uy) — Dx(®°(Uy)),

where Dy (9°(U,)) is an open subcoalgebra of Dy.
3. Forany «, 8 € I such that U, N Upg # @, ¢2(Ua N Ug) is an open subset of Xg, and

Gy 0Dy Dx (D (Uy N Up)) —> Dx(@I(Us N Up))

is a diffeomorphism of open subcoalgebras of Dy.

Let {(Uy, Po)}aer be an X-atlas of M. For each o € I the underlying part of &,
<D2 U, — Xp
is a bijective map onto an open subset of X, and the compositions
Y0 (@D PY(U) — P(Us)

are homeomorphisms. As in the standard theory of manifolds [20] one easily shows that there
exists a unique topology 73y on M such that all U, are open and all &9 are homeomorphisms
onto open subset of Xj.

Definition 4.1.2. Two X-atlases {(Uy, Po)}acr, {{(Ug, Pp)lges on M are compatible if
the union of them {(U,, @,)},suy is an X-atlas on M.
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One easily verifies that compatible X -atlases on M determine the same topology 7y on
M. Since the smoothness of a graded coalgebra morphism in se is a local property one also
has the following:

Proposition 4.1.1. The relation of compatibility of X -atlases is an equivalence relation.

Definition 4.1.3. Let M be a pointed Z;-graded cocommutative coalgebra and X a Z;-
graded Fréchet space. An equivalence class of compatible X -atlases on M is called on X-
smooth structure on M. A coalgebra M with an X-smooth structure inducing a Hausdorff
topology 74 on M is called a smooth coalgebra modelled on the Z;-graded Fréchet space
X, or simply an X-smooth coalgebra.

Note that by Proposition 4.1.1 an X-atlas on M uniquely defines a smooth structure
on M.

Definition 4.1.4. Let M be an X-smooth coalgebra. An X-atlas on M is said to be admis-
sible if it defines an original X-smooth structure on M. A chart (U,, ®,) on M is called
admissible if it belongs to an admissible atlas on M.

Remark 4.1.1. Let {(Ufy, Py)}aes be an admissible X-atlas on a smooth coalgebra M.
By Proposition 3.2.2 and Theorem 3.2.2, {(Uy, ¢2)}ae, is a smooth Xjy-atlas on M. By
the same token compatible atlases on M induce compatible smooth atlases on M. The
space M of group-like elements of M with the smooth structure determined by the atlas
{(Uy, ¢2)}ae 7 is called the underlying manifold of M.

Definition 4.1.5. Let M, N be smooth coalgebras. A morphism & : M — N of Z,-
graded coalgebras is said to be smooth if for each p € M there exist admissible charts
(Ug, Do) on M and (V,,, ¥, ) on N such that p € U,, e%U,) C V,, and the map

W, o®od;! 1 Dx(Uy) — Dx(Vy)
is a smooth morphism of open subcoalgebras.
As a simple consequence of Theorem 3.2.2 one gets:
Proposition 4.1.2. The composition of smooth morphisms of smooth coalgebras is smooth.

Definition 4.1.6. The objects of the category SC of smooth coalgebras are X -smooth coal-
gebras, where X runs over the category of graded Fréchet spaces.

For any two objects M, A" € OSC the space of morphisms MSC(M, N) consists of all
smooth morphisms of graded coalgebras.

The composition of morphisms in SC is defined as a composition of graded coalgebra
morphisms.

An isomorphism in the category SC is called a diffeomorphism of smooth coalgebras.
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Remark 4.1.2. In order to simplify further considerations we assume that objects and
morphisms of the category SC are defined up to diffeomorphisms of smooth coalgebras
with underlying parts being identitical maps in FM.

Remark 4.1.3. Let M, A be smooth coalgebras, and @ : M — A a morphism of Z;-
graded coalgebras. The restriction of & to the set M of group-like elements of M, &0 :
M — N, is called the underlying part of the morphism @: For composition of two Z;-
graded coalgebra morphisms one has (¥ o #)? = ¥9 0 9. By Remark 4.1.1 if (U, @),
(Vy, ¥, ) are admissible charts on M and N, then (U, 452 ) (Vy, '1/}(,) ) are admissible charts
on M and N, and the map

w0000l 0Q(Us) — W)(Vy)

is smooth by Proposition 3.2.2. It follows that the underlying map of a smooth morphism
of graded coalgebras is a smooth map of Fréchet manifolds.

Definition 4.1.7. Let X = Xo @ X be a Z-graded Fréchet space, and {U,, ¢ }oacs and
admissible atlas on a smooth manifold M modelled on the Fréchet space Xg. Let {Wyglacs

be a collection of maps such that
1. forallaeI,Becl(@)={B el :U,NUg # @}

Vg : Dx (9o (Ua N Up)) —> Dx (0 (Ua N Up))

is an isomorphism of smooth open coalgebras such that lllgﬂ = Qg 0@, I
2. foralla € I, ¥, = idIRe%,(U‘,)QDS(X);
3. foralle, B,y € I suchthat U, NUgNU, # 0,

Wpy o Wop = Yoy

on Dx (g (Us NUg NU,)).
A collection {W,g}qes With the properties above is called an X-cocycle of transition sc-
morphisms over the atlas {Uy, ¢ }qec; on M.

One has the following “reconstruction theorem” which is very useful in constructing new
smooth coalgebras,

Proposition 4.1.3. Let {W,5}qer be an X-cocycle of transition se-morphisms on M. Then

there exists a unique smooth coalgebra M with the underlying manifold M and with the
admissible X -atlas {(U,, Wy)}aer Such that

_ -1

Vap = W80V, 1pywdarvny

foralla € I, B € I ().

(35)

The smooth coalgebra M and the X-atlas {(Uy, ¥)}qer of the proposition above are
said to be generated by the X-cocycle {Wupglaes-
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Proof. Let {Wyg)aer be an X-cocycle related to a smooth atlas {Uy, @y }eer on M. For
p € M, consider the space of pairs («, m),, where @ € I is such that p € U, and
m € Dxg, () = R{ga(p)} ® S(X). Two such pairs are equivalent

(a,m)p, ~ (', m)

ifm’ = W, (m). Using the cocycle properties (Definition 4.1.7) one easily shows this is an
equivalence relation. Let M, denote the space of equivalence classes of this relation and
let [(cr, m), ]~ denote the equivalence class of («, m),. Since W, are Z>-graded coalge-
bra morphisms M, acquires the structure of irreducible pointed Z,-graded cocomutative
coalgebra:

All@, m)pl~ =Y [ ma))ple ® [(@, m))ple,
(m)
8([((1’ m)p]’\’) = 8‘ﬂa (Ua)(m)'

Let M be the direct sum of irreducible Z;-graded coalgebras
M= P M,.
peM

For each ¢ € I we define
¥, : M(Uy) 3 [(a, m)y]~ —> m € Rpe (Uy) ® S(X).

Using the cocycle properties (Definition 4.1.7) one verifies that the collection {(Uy, o )}aer
is an X -atlas on M with the required transition sc-morphisms. By Proposition4.1.1 it defines
a unique X-smooth structure on M.

Suppose that there exists another smooth coalgebra M’ over M with an admissible X-
atlas {(U,,, ¥)}aer satisfying condition (35). Then the map defined for each p € M by

M, om— ¥ oW, e M,
extends by linearity to the diffeomorphism of smooth coalgebras over the identity map.

Hence M’ = M by Remark 4.1.2. O

Two cocycles {¥, ﬂ,}a/e I {lI/(;',, g }o7e# Of transition se-morphisms on M are said to be
compatible if there exists a third one {W,g}4c; such that

{0 dorer U@ e darer C{@alaer,
{Wé’ﬂ'}a’el’ U {Wﬂa”ﬂ”}a”el” - {Waﬂ}ael,
as sets of maps. Using the construction of Proposition 4.1.3 for all three cocycles of the
p g P Y

definition above and comparing the resulting smooth coalgebras one gets the following
result.

Proposition 4.1.4. Compatible X -cocycles of transition sc-morphisms on M generate the
same X-smooth coalgebra M and compatible X -atlases on M.
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Definition 4.1.8. Let M be an X-smooth coalgebra. A linear functionai f on M is called a
superfunction if for each p € M there exists an admissible chart (Uy, @) such that p € U,,
and the functional ($, Y fisa superfunction on the open coalgebra D X(¢2(Ua)).

Proposition 4.1.5. Ler M’ be the full algebraic dual of M endowed with the Z»-graded
algebra structure dual to the Z,-graded coalgebra structure on M.

The subspace M”™ C M’ consisting of all superfunctions on an X -smooth coalgebra M
is a Z5-graded subalgebra of M’

Let {(Uy, Py)}aes be an admissible X -atlas on a smooth coalgebra M and let U be an
open (with respect to the induced topology 7r) subset of M. Then the collection

{(UNUy, Pojmuynmua))eer (36)

is an X-atlas on the subcoalgebra

M@) = P M,.

peU

Compatible X-atlases on M induce compatible X-atlases on M(U). The subcoalgebra
M(U) C M with the smooth structure defined by the induced atlas (36) is called an open
subcoalgebra of M.

Assigning to each open subset U C M the Z;-graded algebra M(U)” of superfunc-
tions on M(U) and introducing the restriction maps as duals to the inclusions M((U") C
M), (U’ C U) one gets a sheaf of Z,-graded algebras M?%, = (M, M()"). My, is
called the sheaf of superfunctions on M.

Let ®: M — N be a morphism of smooth coalgebras. By Remark 3.5.2 for each
superfunction g € A", the functional @’g is a superfunction on M. ®*g = ®'g is called
the pull-back of g. For each open subset V C N we define &}, : N (V)" - M(U)" asa
map dual to

Sy M@7N(V)s u— d(p) e N(V).

The collection of maps {@*} defines a morphism of sheaves of Z,-graded algebras &* =
(@°, ®*.) : M}, —> NJ,. One has the following global version of Proposition 3.5.4.

Proposition 4.1.6. The correspondence

M —> M/\ = (M, M()A)v
& — &T = (20, o)

is a covariant functor from the category SC of smooth coalgebras to the category of sheaves
of Z5-graded algebras.
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4.2. Direct product

Let M, N be smooth coalgebras modelled on graded Fréchet spaces X, and Y, re-
spectively. One can introduce an (X @ Y)-smooth structure on M @ A as follows. Let
{(Us, ®y)}aes be an admissible X-atlas on M, and {(Vg, ¥p)}scs an admissible Y -atlas
on V. Consider the collection

{(Ug x Vg, Py @ ¥g) }a,prelxJ- (37
One obviously has

MxN= U Ua X Vﬂ,
(a,B)elxJ

and the Z,-graded coalgebra isomorphisms

Dxoy (P x W5 Ua X Vp))
= Dx(®(Ua)) ® Dy (¥5(Vp)),
Dyay (P x Y3 (Ua x Vg) N (Uar x Vp)))
= Dx(PI(Ua N Uy)) ® Dy (W5 (Vg N V).
By Definition 3.3.2 the RHS of the equations above can be regarded as tensor products in

the model category while the LHS as open subcoalgebras of Dxgy. Then the Z;-graded
coalgebra morphisms

(o ® Wp) 0 (Por @ Wp) ™' = (P 0B, ) ® (g0 @)

are smooth by Proposition 3.3.1. It follows that collection (37) defines an (X @ Y)-atlas on
M®N . One can easily verify that compatible atlases on M and A lead by the construction
above to compatible atlases on M ® N, hence the following definition:

Definition 4.2.1. The tensor product of two smooth coalgebras M, N € OSC modelled
on the Z,-graded Fréchet spaces X, Y, respectively, is the tensor product of Z,-graded
cocommutative coalgebras M ® N endowed with the (X @ Y)-smooth structure determined
by the atlas (37).

As a consequence of Proposition 3.3.1 one gets:

Proposition 4.2.1.
1. Let® : M = N, @' : M’ — N’ be morphisms of smooth coalgebras. Then the tensor
product of graded coalgebra morphisms

PR MIMom@m' — dMQSP' (M) e NON’

is a morphism of smooth coalgebras.
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2. Let M ® N be the tensor product of smooth coalgebras. Let ey, ey be counits in the
coalgebras M, N, respectively. Then the maps

Py - MOIN>m®n — ey(n) -meM,
Py MOINosm®n— eyy(m)-neN
are morphisms of smooth coalgebras.

3. The comultiplication A : M — M & M in a smooth coalgebra M is a morphism of
smooth coalgebras.

Remark 4.2.1. Let us observe that the X @ Y-atlas (37) induces the smooth atlas

((Ua x Vg, @) X YD} preixs

on M x N. It follows that the underlying manifold of M ® A is the cartesian product
M x N of Fréchet manifolds. The underlying parts of smooth coalgebra morphisms from
Proposition 4.2.1 are given by

@D :MxM 3w u) — @°®w),d°u)) ¢ N x N,
Py :MxN>3@uv)—ucM,
Pf,:MxNa(u,v)—»veN,

A Msu— (uu)eMxM.

By Theorem 3.3.1 and Proposition 4.2.1 one gets

Theorem 4.2.1. (M QN Py, Px) is the direct product in the category of smooth coalge-
bras, i.e. for every smooth coalgebra £ and smooth coalgebra morphisms @y - € - M,
@y : £ — N there exists a unige morphism of smooth coalgebras ® : £ - M QN
making the diagram

MON

2R

M 5‘1’ N

k/
E

commute.

Remark 4.2.2. The unique morphism @ in the theorem above is given by the composition
@ = (Py @ Py) 0 Ap,
and its underlying part by

@ Ecu— (@%w), 2%w) e M x N.
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4.3. Subcategory of smooth Fréchet manifolds

Letus denote by OFM and MFM the collections of objects and morphisms of the category
FM of smooth Fréchet manifolds. In this Section we shall show that the category FM
is equivalent to the category SCyp of even smooth coalgebras. SCyp is defined as the full
subcategory of SC consisting of all smooth coalgebras modelled on purely even graded
Fréchet spaces X = X @ {o}. By definition for all M, N € SCy

MSCy(M, N) = MSC(M, N)).

Note that by Theorem 4.2.1 SCy inherits the direct product from SC.
Gathering together Remarks 4.1.1, 4.1.3, 4.2.1, and 4.2.2 one gets:

Proposition 4.3.1. The correspondence

0SC 5 M — M < OFM,
MSCM,N) € @ — & € MFM(M, N)

is a covariant functor respecting the direct product.

Let {(Uy, ¢u)}ecr be an admissible atlas on a Fréchet manifold M modelled on a Fréchet
space X. By Remark 3.4.1 the family {®yg}4c; of sc-morphisms defined by

—1
"paﬂ = (ﬂoﬁ SR )*IRWB(U,,ﬂUﬂ)®S(X)’ Bel(@) (38)

isan (X &{o})-cocycle of transition sc-morphisms over the atlas {(Uy, ¢y ) }oc7 On M. By the
same token cocycles constructed from compatible smooth atlases on M by formula (38), are
compatible. Thus, by Propositions 4.1.3 and 4.1.4, the following definition is not ambiguous.

Definition 4.3.1. The (X & {o})-smooth coalgebra D(M) generated by the cocycle (38) is
called the smooth coalgebra of the Fréchet manifold M.

For each admissible atlas {(Uy,ga)}aer on M, the (X & {0})-atlas on D(M) generated
by the cocycle (38) will be denoted by {(Uy, @ux)}acr. Applying this construction to the
maximal atlas on M we define for each admissible chart (U, ¢) on M the corresponding
admissible chart (U, px) on D(M). One easily verifies that the definition of (U, ¢y) is
independent of the choice of admissible atlas containing (U, ¢).

Proposition 4.3.2. Let M € OSCoy. Then M is the smooth coalgebra of its underlying
manifold M, i.e. M = D(M).

Proof. Let {(Uy, Po)}acr be an admissible (X & {o})-atlas on M. Then by Remark 4.1.1
the atlas {(U,, ‘;Ibg)}aE 7 1s an admissible smooth atlas on the underlying manifold M. For all
a,Bel(a),Py0 ¢ﬂ'1 are morphisms of the model category scp and by Remark 3.4.1 @, o

q);‘ = (rbg oy 1)«. Then by the construction of D(M) the map defined for each p € M by

Mp 3 —> (9,)7 0 By(u) € D(M),
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extends by linearity to a diffeomorphism of smooth coalgebras over the identity map. Here
M = D(M) by Remark 4.1.2. O

Let¢ : M —> N be a smooth map of Fréchet manifolds. Then for each p € M there are
admissible charts (Uy, ¢o) at p € M and (Vg, Y¥g) at ¥ (p) € N such that the composition

Ypodowy' : pa(Uy) — Yp(Vp)

is a smooth map between open subset of Fréchet spaces (morphism in fm).
For all 4 € D(M), we define

Gap(i) = ¥z, 0 (Vg 0 b0 05 a0 Pan (). (39)

By Remark 3.4.1 the definition above is independent of the choice of admissible charts
at p € M and ¢(p) € N. Extending formula (39) by linearity in p one gets the smooth
morphism of graded coalgebras

¢« : D(M) — D(N),
with underlying part (¢4)° = ¢.

Proposition 4.3.3. Let M, N € OS8Cy. For all smooth morphisms of graded coalgebras
M- N, &= (@9,

Proof. By Definition 4.1.5 for each p € M there exist admissible charts (Uy, $,) on M,
and (V,,, ¥,) on N, suchthat p € Uy, U, < V, and the composition ¥, o ® o (D)~}
is an sco-morphism. Then by Remark 3.4.1

Wy 0® o (@) = (W) 0 P00 ().

By Proposition 4.3.2 one can assume P, = PJ, and ¥, = ¥, Hence forall p € M, u €
D(M),

() =W, " o (W 0 @0 (). 0 B, (W),
and @ = (99),. m]

Propositions 4.3.1-4.3.3 imply the following global counterpart of Proposition 3.4.1 and
Remark 3.4.1.

Theorem 4.3.1. The correspondence

OFM > M — D(M) € OSCy,
OFM(M, N) 3 ¢ — ¢ € MSCo(D(M), D(N)),

is an equivalence of categories FM and SCy. Moreover it is the right inverse to the functor
of Proposition 4.3.1.
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The result above means that the category of smooth Fréchet manifolds can be regarded as
a full subcategory of the category of smooth coalgebras. This partly justifies our construction
of SC as a Z»-graded extension of FM.

Remark 4.3.1. Composing the functors from Proposition 4.3.1 and Theorem 4.3.1 one gets
the covariant functor respecting the direct product

0SC > M — M — M =D(M) € 0SCy,

MSC(M, N) 5> & — ¢° — & = (%), € MSCo(M, A).

The functor above is called the underlying functor.

Let us note that M is canonically embedded in M. Let iy : S(Xo) — S(Xo ® X1) be
the canonical embedding defined as the universal extension of the composition

0
Xo 2 Xo® X1 — S(Xo @ X1).
For each p € M we define
Mp 3 —> &' 0 (idgo ., ® i) o B0, (1) € My,

where (U,, @) is an admissible chart of M at p € M. One easily verifies that the definition
above is independent of the choice of an admissible chart at p and extends by linearity to
the morphism of smooth coalgebras i : M — M, with i® = idy,. By Remark 4.1.2 M
can be regarded as a subcoalgebra of M. M is called the underlying subcoalgebra of M.

Remark 4.3.2. We shall briefly discuss the geometric interpretation of the smooth coal-
gebra of a Fréchet manifold M. By definition, D(M) is the direct sum of its irreducible
components

D(M) = P DM),.
peEM

With respect to the graded coalgebra structure each irreducible component D (M), is iso-
morphic with S(X @ {0}). For each p € M let

D), = | D)
k>0
be the coardical filtration of D(M),.

The smooth structure on D(M) is related to the smooth structures of the kth order co-jet
vector bundles over M in the following way. For k > 0 we define the subset

TOM) = | P Px c D),
peM

and the projection

a® - TOMP > DAY 54— pe M.
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Let {(Uy, ¢a)}aecs be an admissible atlas on M and {(Uy, @) }acr the corresponding (X &
{o})-atlas on D(M). For each k > 0, the collection {(Uy, 1}5’0)}&e 1, where

T8 @Y Uy) 3 1 —> @an(i) € Uy x SP(X), (40)

is a trivialising covering of 7® : t®(M) — M (we are using the terminology of [20]).
One easily verifies that compatible atlases on D(M) yield compatibie trivialising coverings
and that 7% : t® (M) — M acquires the structure of a smooth vector bundle over M with
standard fibre $®)(X).

In the case of a finite-dimensional Fréchet space X ~ R” the bundle 7 ® : 1O (M) — M
constructed above is called the kth order co-jet bundle over M and is dual to the bundle of
kth order jets on M.

In the case of an infinite-dimensional Fréchet space X, for k > 2 the standard fibre
S®(X) is not complete with respect to the direct sum and the projective tensor product
topologies on

k
SO =P s,
i=0

and S'(X), respectively. Since the transition maps of the trivialising covering (40) are
continuous with respect to this topology, the bundle 7% : t®)(M) — M admits a unique
extension to a bundle with a complete standard fibre. Let us stress that in the present
coalgebraic approach this completion will not be used.

Remark 4.3.3. The construction discussed in the previous remark applies also to the subset
of all primitive elements of the coalgebras D(M). Let t,(M) be the space of all primi-
tive, with respect to p € M, elements of D(M). For each p € M one has the invariant
decomposition

DM =R T,(M).

Let us introduce the set

T(M) = | (M),
peM

with the projection 7 : T(M) — M given by n(7,(M)) = p. In this case the smooth
structure on D(M) induces the canonical smooth structure of the tangent bundle of M.

Let M be a smooth Fréchet manifold, (D(M), A, €p) the smooth coalgebra of M, and
(C*° (M), M, u) the algebra of smooth functions on M. For each p € M let us consider the
pairing

{()p : D(M), x CZ(M) — R,
given by

(ps F)p = (@ax(itp)s £ 007 ) gu(a)s 41)
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where (U, ) is an admissible chart on M at p. One easily verifies that the definition
above is independent of the choice of an admissible chart at p. Extending formula (41) by
linearity in the first variable one gets the pairing

(-, ¥m : DIM) x C®°(M) — R. (42)

Using Remark 3.4.1 and Proposition 3.4.2 one gets the following.

Proposition 4.3.4. Let D(M) be the smooth coalgebra of a Fréchet manifold M and
C(M) the algebra of smooth functions on M.
1. Forall f,g € C*(M), u € D(M)

(o f -8 = D (1 FIm s 8)us
(W)

(u, Dy = ey (),

where Apyp =) B(1) X L)
2. Let ¢ : M — N be a smooth map of Fréchet manifolds. Then

(¢*:u'7 f)N = (l"“’ f O¢)M’
forallp € D(M), f € CP(N).

As in the case open even coalgebras one can show that the pairing (42) is nonsingular.
Then the proposition above implies the following.

Theorem 4.3.2. The map
D(M) > u — {(p, ) € C¥(M)°

is an injective morphism of Z,-graded coalgebras.
4.4. Subcategory of supermanifolds

We define the category SC™ as a subcategory of SC consisting of all smooth coalgebras
modelled on finite-dimensional Z;-graded Fréchet spaces and all SC-morphisms between
them. By definition SC~ is a full subcategory of SC, i.e. for all M, A" € OSC~

MSC=(M, N) = MSC(M, N).

By Theorem 4.2.1 SC= inherits the direct product from SC. In this section we shall construct
an equivalence of the category of BLK supermanifolds SM introduced in Section 2.4 with
the category of finite-dimensional smooth coalgebras SC*.

Let Ay be a supermanifold. For each (m, n)-atlas {(Uy, Fy)}eer on Ay the family of
maps {Fuglacr givenforalla € I, 8, € I () by

_ -1 ., om.mn m.n
Fup = Fgo F]': SFQ(UmUﬂ) — SFg(UaﬁUﬂ) (43)
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is an (m, n)-cocycle of sm-transition maps over the smooth atlas {(Uy, Fg)}o,.E ; on the
underlying manifold M. Applying the functor of Proposition 3.4.4 to the cocycle (43) one
gets (R™ @ R")-cocycle of sc-transition maps

Faﬂ* = (Fﬂ o Fa_l)* : Dm.,n(FS(Ua N Uﬂ)) —> Dm,n(Fg(Ua N Uﬂ))s (44)

over the same smooth atlas on M. By Proposition 4.1.3 the cocycle (44) generates a unique
smooth coalgebra D(.4 ) and the admissible (R™ @& R")-atlas {(Uy, Fyx)}oes on D(Apr).
One easily verifies that different (m, n)-atlases on Ay, lead by the above construction
to compatible (R™ @ R")-atlases on the same smooth coalgebra D(Asr). Applying the
construction to the maximal (m, n)-atlas on Ay, we define for each chart (U, F) on Ay
the corresponding admissible chart (U, F,) on D(Ap).

Definition 4.4.1. The smooth coalgebra D(.A)) generated by the cocycle (44) is called the
smooth coalgebra of the supermanifold .Ap,.

Reversing the construction above and using the reconstruction theorem for supermani-
folds (Proposition 2.4.3) one can show that the correspondence

OSM > Ay —> D(Ay) € OSC*

is bijective. Moreover for each admissible chart (U, @) on D(Ayy) there exists a chart
(U, F) on Ay such that @ = F,.

Let F = (F O F): Ay — Bybea morphism of supermanifolds. Then for each p € M
there are charts (U, F,) on Ay and (V,,, G,) on By such that p € Uy, FY%U,) ¢ Vi,
and the composition

Gy oFoFy':Sun(FQUa)) —> Sma(G)(Vy))

is a morphism in the model category sm.
Let D(Au),p be the irreducible component of D (A ) containing the group-like element
p € M.For all u € D(Ay), we define

Fup(w) =G 0(Gy o F o Fy')s 0 Fou(p). (45)

By Proposition 3.4.4 the definition above is independent of the choice of admissible charts
at p € M and #°(p) € N. Extending formula (45) by linearity in p one gets the smooth
morphism of graded coalgebras

Fy : D(Am) — D(Bn),
with the underlying part (F,)® = FO. As a consequence of Proposition 3.4.4 one gets:
Theorem 4.4.1. The correspondence

OSM 5 Ay — D(Apy) € OSC™,
OSM(Ay, By) 3 F — F, € MSC=(D(Ap), D(Bxn)) 46)

is an equivalence of categories SM and SC~.
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It follows that the category of BLLK supermanifolds can be identified with the full sub-
category of the category of finite-dimensional smooth coalgebras. Since by Theorem 4.3.1
the category of Fréchet manifolds can be identified with subcategory of even smooth co-
algebras, SC provides a correct extension of both categories.

Remark 4.4.1. As in the case of category FM of Fréchet manifolds (Remarks 4.3.2 and
4.3.3) the smooth coalgebra of a supermanifold admits the geometrical interpretation in
terms of co-jet vector superbundles [5]. Since the constructions of these bundles requires
some techniques of algebraic geometry [17] not used in the present paper, we refer to the
original paper [5] for the discussion of this point.

Let (D(Aur), Ay, €p) be the smooth coalgebra of a supermanifold Ay, and (A(M),
M, u) the algebra of superfunctions on .Ays. For each p € M the pairing

(- )p 1 D(Aw)p X AM) — R
is defined by
(1 p = (Fau(i), (Fe D (i) g0y 47)

where (Uy, Fy) is a chart on .4y at p. By Proposition 3.4.4 the definition above is in-
dependent of the choice of a chart at p. Extending formula (47) by linearity one gets the
pairing

(It D(Ap) x AM) — R. (48)

As a consequence of Propositions 3.4.4 and 3.4.5 one has the following:

Proposition 4.4.1. Let D(Ayy) be the smooth coalgebra of a supermanifold Apy.
1. Forall f,g € A(M)qU A(M)1, n € D(Ap)

(w, f-@m =) (=DM uy, Hune, gm
()
(n, Dy =em(n),

where App =3, (1) ® K(2)-
2. Let F=(F°, F): Ay — By bea morphism of supermanifolds. Then

(Feits v = (U, Fn fim
forall u € D(Ap), f € B(N).

Using Proposition A.5.6 and the above proposition one obtains the following global
version of Proposition 3.4.6 [5,19].

Theorem 4.4.2. The map
D(AM) 3 0 — (@, )y € AM)®
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is an isomorphism of Z,-graded coalgebras.

Each superfunction f on a supermanifold .A3s can be identified via the pairing (48) with
a superfunction (-, f)p on D(A). Assuming this identification one has:

Propeosition 4.4.2. The functor of Proposition 4.1.6 restricted to the subcategory SC= of
finite-dimensional smooth coalgebras

OSC~ 3 M — M}, = (M, M()") € OSM,
MSC= 5 ® — ¢* = (0°, d*) e MSM

is an equivalence of categories and the inverse to the functor of Theorem 4.4.1.
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Appendix A
A.l. Graded spaces

A Z5-graded space is a vector space V with distinguished subspaces Vp, V) such that V
is the direct sum Vy @ Vj of Vg and V). Vy, Vi are called the even and the odd part of V,
respectively. Similarly, an element v € V is called even if v € Vp and 0dd if v € V|. Any
element v € V has a unique representation as a sum v = vy + v of its even vp € Vp and
odd v| € V| components. An element v € Vp U V is called homogeneous. If v € V;, v # 0
the parity |v| of a homogeneous element v is defined by |v| =i € Z;.

Let V, W be Z»-graded spaces. The space Hom(V, W) of all linear maps from V to W
gets the natural grading

Hom(V, W) = Hom(V, W)o & Hom(V, W)1,
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where f € Hom(V, W); if f(V;) C Wi;. A morphism of Z,-graded spaces is an even
linear map (i.e. an element of Hom(V, W)g).

A graded subspace W C V of a Z,-graded space V is a vector subspace of V with the
Z5-grading givenby W = (W N Vp) & (W N V).

The direct sum V @ W of Zp-graded spaces V, W is the direct sum V @ W of vector
spaces V, W with the Z,-grading

(Ve W) =V W, (VeW) =V, e W.

The tensor product VQ W of Z»-graded spaces V, W is the tensor product V ® W of vector
spaces with the Z,-grading

Vewx= P view,
i+j=k

Let V, W be Z;-graded spaces. The twisting morphism T : V@ W — W Visa
morphisms of graded spaces defined by

To@w)=(—D""yey

forallv e VU Vi, w e Wy U Wy,
A.2. Graded algebras

Definition A.2.1. A triple (A, u, u) where A is a Z;-graded space and p, u are morphisms
of Z,-graded spaces

w: A9 A — A (multiplication)
u:R— A (unit)

is called a Z,-graded algebra if the diagrams

ARABA

. y W“

Ag A A® A (associativity)
o I
A
AR A

u W w u

ReA s A®R  (unitarity)

commute.
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A Z>-graded algebra A is called commutative if the following diagram commutes:

/ N
A9A —L Az A

A morphism of Z;-graded algebras F : A — B is a morphism of graded spaces such that
the diagrams

AeA-L8F _gen R
HA KB V \UB
A F B A F B
commute.

The tensor product of Z,-graded algebras (A, L4, ua), (B, g, up) is the tensor product
A ® B of Z;-graded spaces with the Z,-graded algebra structure given by

ida®T®idg HA®UB
[LA®B1A®B®A®B—>A®A®B®B—>A®B,

vaQup
Usgp : R=R®R — A®B.

Definition A.2.2. A bigraded algebra A is a Z,-graded algebra with a Z -grading A =
@2, A’ such that:

1. forenergyi € Z, A' is a Z»-graded subspace of A;

2. u(R) c AY;

3. forevery i, j € Z,, p(A' ® AY) C Al

A.3. Graded coalgebras

Definition A.3.1. A triple (C, A, ) where C is a Z,-graded space and A, ¢ are morphisms
of Z;-graded spaces

A:C— C®C (comultiplication)

e:C—R (counit)

is called a Z;-graded coalgebra if the diagrams
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COCac

AW WA

CRC c®C (associativity)
X /
c

cC®C

s’m/ we

R&C A coR  (unitarity)

commute.

A Z,-graded coalgebra C is called cocommutative if the following diagram commutes:

A morphism of Z,-graded coalgebras @ : D — D is a morphism of graded spaces

such that the diagrams
commute.

The tensor product of Z>-graded coalgebras (C, A., ec), (D, Ap, £p) is the tensor prod-
uct C ® D of Z,-graded spaces with the Z,-graded coalgebra structure given by

coc —22% .pegp

Ac

C ——

c®Ap idc®T®idp
Acep : C®D————>C®C®D®D —> C®DRCK®D,

c®ep
EC®D:C®D—>R®RER.

Let C be a Z»-graded coalgebra. For any ¢ € C, Ac can be written as a (nonunique) sum
of simple tensors. It is convenient to use the following so called sigma noration:

Ac = ZC(U ® c),
(©
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where one can assume that all c1), ¢(2) are homogeneous. Similarly, by the coassociativity
one can write

Ae=(ARi1d® - - ®id)o---0ARQido A
N e
k—1

= ZC(I) Q- @ Ckt1)-
(©)

A Z,-graded coalgebra C is irreducible if any of two nonzero Z,-graded subcoalgebras
have nonzero intersection. A maximal irreducible Z,-graded subcoalgebra of C is called an
irreducible component of C. A Z,-graded coalgebra is simple if it has no nonzero proper
Z,-graded subcoalgebras. A Z,-graded coalgebra is pointed if all simple Z,-graded sub-
coalgebras are one-dimensional.

The structure theorem for cocomutative coalgebras [40] is also valid in the Z,-graded
case [5,19].

Theorem A.3.1. Any cocomutative Z;-graded coalgebra is a direct sum of its irreducible
components.

An element g of a Z,-graded coalgebra is called group-like if Ag = g ® g. We denote
the set of all group-like elements of a Z»-graded coalgebra C by G(C). For all g € G(C),
Rg C Cp is a one-dimensional simple Z,-graded subcoaigebra of C. When a Z,-graded co-
comutative coalgebra is pointed, each irreducible component C, of C is uniquely determined
by a unique group-like element g contained in C,. Then the direct sum decomposition takes
the form

c= p c.
8€G(0)

In the case of a pointed irreducible coalgebra C some further structure information is encoded
in so called coradical filtration [40]. We shall briefly describe the Z,-graded version of this
construction and theorem [5,19].

Definition A.3.2. A filtration of a Z,-graded coalgebra C is a family {C*})_ of Z,-graded
subcoalgebras such that

1. Forany k < k’, C¥) is a Z,-graded subcoalgebra of ),

2. C=Ui=oC®.

3. ACW =Y ¢ D @c®, forall k > 0.

Let C, be a pointed irreducible Z;-graded coalgebra and g its unique group-like element.
There is direct sum decomposition
Ce=Rga@dC,

where Cj = kerec. Let .}l : C;, —> C be the projection on the second factor. We define

family {C;,k)},‘:io of Z;-graded subcoalgebras of C,:
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g’ =Rg,
k+1

Cék) =ker (®JT;_) o AY k>1.

Since both rr; and A* are morphisms of Z,-graded spaces, C&(,k) is a Z,-graded subspace
of C, forallk > 1.

Proposition A3.1. Ifc € C{'F = ¢ Ny, then

Ac=g®chﬂ4®g+»

where

k-1
)+ (k—i)+
ye) Ot ect ot

i=1
Theorem A.3.2. The family {Cék)},f‘;o is a filtration of the coalgebra C,,.

The filtration of the theorem above is called the coradical filtration.
Let g be a group-like element of a Z;-graded coalgebra C. An element p € C is called
primitive with respect to g if

Ap=p®g+gp.

We denote the set of all elements p € C primitive with respect to g by P¢(C). Note that
Py (C) C Cq, where C; is the irreducible component containing g. By Proposition A.3.1

C) = Rg @ P(C).

In particular Py (C) is a Z,-graded subspace of C. In case of a pointed irreducible Z,-graded
coalgebra C we denote by P(C) the space of all primitive elements with respect to a unique
group-like element in C.

Proposition A.3.2. Let C, D be Z-graded cocommutative coalgebras and @, ¥ mor-
phisms of Z,-graded coalgebras D — C. Suppose C is pointed irreducible, then f = g if
and only if Im(® — ¥) N P(C) = {o}.

Definition A.3.3. A bigraded coalgebra is a Z,-graded coalgebra C with a Z -grading
C = @y C* such that:

1. For e;ery k>0,Ckisa Z;-graded subspace of C.

2. &(C*) =0forall k > 1.

3. Forevery k > 0, A(CK) c @F_,C' @ CF..

A bigraded coalgebra C is called strictly bigraded if C° = R and C! coincides with the space
P(C) of all primitive elements of C.
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Note that the condition C° = R implies that a strictly bigraded coalgebra is pointed
irreducible. The relation between the Z -grading and the coradical filtration in strictly
bigraded coalgebras is given by the following:

Proposition A.3.3. A bigraded coalgebra C with C° = R is strictly bigraded if and only if
foreveryk > Q

k
c® =P
i=0
A.4. Graded bialgebras

Definition A.4.1. A system (B, i, u, A, &) where B is a Z,-graded space and @, u, A, ¢
are morphisms of Z,-graded spaces

u:B@B— B A:B—B®B
u:R— B e:B— R

is called a Z,-graded bialgebra if

1. (B, i, u) is a Z;-graded algebra.

2. (B, A, ¢) is a Z3-graded coalgebra.

3. A and ¢ are morphisms of Z,-graded algebras.

Note that condition 3 can be replaced by requirement that ¢ and ¥ are morphisms of
Z,-graded coalgebras.

Definition A.4.2. A bigraded bialgebra is a Z;-graded bialgebra which is both a bigraded
algebra and bigraded coalgebra with respect to the same Z_ -grading.

A bigraded bialgebra is called cocommutative, pointed, irreducible, strictly bigraded, if
it is so with respect to its coalgebra structure.

Definition A.4.3. A Z;-graded bialgebra H is called a Z,-graded Hopf algebra if there
exists a morphism of Z,-graded spaces s : H — H such that the diagram

A
HeoH—2 7 HRH
£
s®id R id®s
| v
H&H £ H L . HneoH

commutes. The morphism is called the antipode of H.

The antipode if exists is unique. One can also show that s is a Z»-graded algebra and
coalgebra antimorphism, i.e. the following diagrams are commutative.
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HoH —E— H H
ls@s y‘
HRH 8 R s
|T PN

HeH—F— H H
H HOH H
ls@s ‘Y
s H®H 5 R
7 A
H HOH H

If ‘H is a bigraded bialgebra and the antipode exists, it necessarily respects Z -grading.
A.5. Dual coalgebras

Let (A, M, u) be an algebra over R with multiplication M : A® A — A and unit
u: R — A. We denote by A° the subspace of the full algebraic dual A’ consisting of all
elements @ € A’ such that kera contains a cofinite ideal of A.

Proposition A.5.1. Let A, B be Z»-graded algebras and F : A — B a morphism of
Z5-graded algebras. Then:

1. A°is a linear subspace of A’.

2. Let F': B' > A’ bedualto F : A — B. Then F'(B°) C A°.

3. A°Q@B° = (A® B)°.

4. Let M' : A — (AQ A)Y be the dual to the multiplication in A. Then M'(A°) C A°® A°.

Proposition A.5.2. Let (A, M, u) be a Z;-graded algebra over R. Then the maps
AEM(AO A — A°Q® A°,
e=up: A°— R,

define on A° a structure of Z;-graded coalgebra. If A is Z,-graded commutative then A°
is Z-graded cocommutative.

Definition A.5.1. The coalgebra (A°, A, ¢) of Proposition A.5.2 is called the dual coalge-
bra of (A, M, u).

The following property of (A°, A, ) may serve as independent definition of dual
coalgebra.

Proposition A.5.3. A° is the maximal coalgebra in A', i.e. iffora € A/, M'(a) € A’ ® A’
thena € A°,
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The dual coalgebras of Z;-graded algebras of superfunctions of BLK supermanifolds
have been analysed in [5,19]. Here we briefly present structure results used in the main text.

Proposition A.5.4. Let A(M) be the Z;-graded algebra of superfunctions on a super-
manifold Aps. Then

1. A(M)® is a pointed Z3-graded cocomutative coalgebra.

2. Each group-like element of A(M)° is of the form

§p=1(p,): AM)> f — f(p) eR

for some p € M.

By the structure theorem for pointed Z;-graded cocomutative coalgebras (Theorem
A.3.1), one has the following:

Proposition A.5.5. A(M)° is the direct sum of pointed irreducible coalgebras

AM)° = P A,

peM

where .A(M ) denotes the irreducible component containing the group-like element 5,,.
p ! . . P

Applying the structure theorem for pointed irreducible Z,-graded coélgebras (Theorem
A.3.2) one gets for each irreducible component .A(M )Z the coradical filtration

Ay, = ) Aan;®,

PEM
with
AM);” =Rp,
A =Rp @ PAM);),

where P(A(M )p) is the space of all primitive with respect to 8, elements of A(M)°. A
more detailed description is given by the following [5,19]:

Proposition A.5.6. Let A(M )y = Ukso AM )?,(k) be the coradical filtration of the irre-
ducible component A(M )y, of the dual coalgebra A(M)°. Then for each k > 0

AME = o € AMD® : (o, 13™) = 0) = (ABD/ 1T,
where I, is a maximal ideal in A(M) consisting of all supérfunctions f € A(M) such that
fop) =0.
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