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Abstract 

A complete mathematical framework for coalgebraic formulation of supergeometry and its 
infinite-dimensional extension is proposed. Within this approach a supermanifold is defined as a 
graded coalgebra endowed with a smooth structure. The category of such coalgebras is constructed 
and analysed. It is shown that it contains as its full subcategories both the category of smooth FrCchet 
manifolds and the category of finite-dimensional Berezin-Leites-Kostanant supermanifolds. 0 1999 
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1. Introduction 

There are basically two different approaches to supergeometry: the algebraic approach 
introduced by Berezin and Leites [8] and further developed by Kostant [19] and Leites 
[22], cf. [7,12,25,35]; and the geometrical approach proposed by Rogers [31] and Dewitt 
[l 11, cf. [2,3,9,18,30]. The theoretical framework incorporating both approaches was first 
proposed by Rothstein in the form of axiomatic definition of a supermanifold [33] and 
further analysed and improved by Bruzzo et al. [4]. The Berezin-Leites-Kostant (BLK) 
theory provides the simplest realisation of this axiomatic definition perfectly sufficient 
to derive all nontrivial results of finite-dimensional supergeometry including theories of: 
Lie supergroups [ 191, complex supermanifolds [ 15,29,32], supersymplectic supermanifolds 
[13,34], or moduli of super Riemann surfaces [1,6,14,21]. 
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All these results supported by methods of algebraic and analytic geometry along with 
conceptual simplicity of the BLK approach (it does not contain any spurious Grassman 
algebra of constants) make it a perfect mathematical language for all physical applica- 
tions in which a finite-dimensional geometry is involved. In supersymmetric classical and 
quantum field theories however one has to deal with infinite-dimensional superspaces of 
supergeometric stcrutures. A typical problem one encounters in this type of applications 
is to analyse the global structure of supermoduli intuitively constructed as a quotient of 
an infinite-dimensional supermanifold of field configurations by an infinite-dimensional 
supergroup of gauge transformations. This construction well known for “bosonic” models 
was never made rigorous in the super case. The only method available is based on finite- 
dimensional techniques of deformation theory [ 1,14,21]. Although it usually provides quite 
a lot of information about global geometry of the supermoduli, analysing induced structures 
seems to require constructing the quotient. The lack of rigorous and efficient methods of 
infinite-dimensional supergeometry is also responsible for the informal heuristic way one 
treats anticommuting classical fields in physical models. As a consequence the understand- 
ing of global geometry of supermanifolds of field configurations as well as actions of gauge 
supergroups on these supermanifolds is in sharp contrast with sophisticated methods of 
standard global functional analysis [ 16,281 and detailed knowledge about similar problems 
in “bosonic” models. 

The aim of the present paper is to construct an infinite-dimensional extension of the 
BLK supergeometry. Before discussing a possible solution to this problem, let us briefly 
consider what kind of examples of infinite-dimensional supermanifolds one should expect 
in physical models. In the standard smooth geometry the most important and interesting 
class of objects studied via methods of functional nonlinear analyses are manifolds of 
maps with possibly additional properties like that carried by sections of bundles. In par- 
ticular manifolds of various geometrical structures belong to this class which is actually 
essential for the physical and most of mathematical applications of infinite-dimensional 
geometry [16,28]. One can expect that also in supergeometry, supermanifolds of maps 
are fundamental for a geometric formulation of supersymmetric models. For an excel- 
lent heuristic discussion of the notion of map between supermanifolds in the context 
of physical applications we refer to the paper by Nelson [27]. A special case of maps 
from the supermanifold S’,’ to a manifold was also analysed by Lott [23,24]. The main 
points is that supergeometry requires a notion of map essentially wider than the notion 
of morphism. This is in contrast to the standard smooth geometry where both notions 
coincide. 

In the BLK category, morphisms are defined as even &-graded algebra morphisms. For 
instance for any pair A, 23 of supermanifolds all BLK morphisms from A to B form an 
ordinary (not graded) infinite-dimensional manifold Mor(d, B). One would rather expect 
a supermanifold of maps Map(d, B) with Mor(d, a) playing the role of its underlying 
manifold. In particular one would like to interpret the &graded space of real-valued su- 
perfunctions on a finite-dimensional supermanifold A as a model space of a linear infinite- 
dimensional supermanifold of maps from A to R. Certainly morphisms from A to R form 
only the even part of this superspace. 
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The fact that morphisms are not enough to capture the intuitive notion of “odd” maps 
one needs in physical application is sometimes referred to as the main shortcoming of the 
BLK theory (see for example the discussion in [lo]). In its simplest form the argument 
says that coefficients of a superfunction are ordinary real-valued functions which do not 
anticommute and therefore cannot provide a working model for anticommuting classical 
fields one needs in physics. 

This apparent drawback can be simply overcome by regarding anticommuting classical 
fields as odd coordinates on an infinite-dimensional supermanifold of fields configurations 
[36]. Within the BLK approach the odd variables {&}~=, can be seen as a basis in the odd 
part of a &-graded model space Rm*n = Rm $ R”. As such they are genuine “commuting” 
objects of standard linear algebra. The “anticommuting” nature shows up when elements 
of the dual basis {P)E=, are interpreted as generators of the exterior algebra A@!~)’ over 
[R”]‘. Following this line of thinking one can regard classical fermion fields as elements 
of the ordinary linear space _7=t of sections of an appropriate bundle, with Ft being the 
odd part of an infinite-dimensional &-graded model space F = .& @ Ft. Elements of Ft 
anticommute as arguments of functionals from the exterior algebra AF{ and play essentially 
the same role as Q-variables in the finite-dimensional case. 

It should be stressed that a reasonable extension of an ordinary manifold Mor(A, ,13) 
to supermanifold Map(d, a) requires a global constuction. Indeed according to the basic 
idea of the BKL approach one can think of “odd maps” as odd coordinates of an infinite- 
dimensional supermanifolds of maps Map(d, a) rather than elements of some set. This 
means in particular that also the notion of composition cannot be defined point by point but 
rather as a morphism of supermanifolds 

o : Map(d, B) x Map@, C) --+ Map(d, C), 

where x stands for the direct product in the category of infinite-dimensional supermanifolds. 
The obvious requirement for composition o is that its underlying map coincides with the 
standard composition of morphisms of finite-dimensional supermanifolds. 

Another problem of constructing an infinite-dimensional supergeometry is to choose an 
appropriate class of model spaces. Since the composition of morphisms in the BLK cate- 
gory involves differentiation of their coefficient functions with respect to even coordinates, 
smoothness is the minimal possible requirement for morphisms and functions. In conse- 
quence supermanifolds of supergeometrical structures which are expected to be most inter- 
esting objects of infinite-dimensional supergeometry should be modelled on Frtchet spaces. 

The first systematic formulation of infinite-dimensional supergeometry was given by 
Molotkov [26]. In this approach Banach supermanifolds are defined as functors from the 
category of finite-dimensional real Grassmann superalgebras r\lP (n = 1,2, . . .) to the 
category of smooth Banach manifolds 

M : A[Wn + M(A[W”). 

For each Grassman algebra A[w”, M(AW) can be identified with smooth manifold of 
morphisms Mor(Pn, M) where P,, denotes finite-dimensional supermanifold with zero 
even dimension and the odd dimension n (n-dimensional superpoint). 
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The idea to regard supermanifolds as point functors was first introduced by Schwarz in 
his attempt to reconcile the standard sheaf formulation of BLK finite-dimensional geometry 
with the intuitive informal language used by physicists [39]. The equivalence of Schwarz’s 
approach with the BLK theory was shown by Voronov in [41]. Molotkov’s formulation can 
be seen as a proper generalisation of the Schwarz description to infinite-dimensions (i.e. the 
BLK category of finite-dimensional supermanifolds is a full subcategory of the category of 
smooth Banach supermanifolds). 

For any two supermanifolds A, B (not necessarily finite-dimensional) the supermanifold 
of maps can be defined by the functor 

Map(d, B) : AR” ---+ Mor(pn x A, B). 

The formalism also allows for a construction of a composition with the required properties 
and applies as well to smooth supermanifolds modelled on locally convex or tame Frechet su- 
perspaces. In principle, Molotkov’s formulation satisfies all requirements a mathematically 
rigorous infinite-dimensional supergeometry should satisfy. It has been in fact implicitly 
used in several papers when a rigorous treatment of elements of infinite-dimensonal su- 
pergeometry was unavoidable [ 1,21,23,24]. However, technical and conceptual difficulties 
of this approach make its wider application in physics highly problematic. According to 
the basic idea of the functorial approach, an object A in the category is fully described by 
morphisms Mor(P, , A) from a sufficiently large family {pnPnnEl of other objects. Such a 
description is in sharp contrast with the intuitive physical understanding of space or super- 
space. Also technicalities involved are in contrast with relatively simple heuristic formalism 
used by physicists. 

Another approach to infinite-dimensional supergeometry aimed to avoid the functorial 
definition of supermanifolds was developed by Schmitt [37,38]. The basic idea is to define an 
infinite-dimensional supermanifold as a ringed space. Although not functorial, this approach 
is technically even more complicated. The main reason is that in the infinite-dimensional 
supergeometry the language and methods of algebraic geometry are essentially less efficient 
and less powerful than in the finite-dimensional case. In the standard BLK approach one 
has a very simple algebraic description of morphisms between supermanifolds, either as 
morphisms of sheaves of graded algebras or as morphisms of graded algebras of functions. 
Also vector fields on a supermanifold can be described in a purely algebraic way as graded 
derivations of the graded algebra of superfunctions. Proceeding to infinite-dimensional 
geometry one can still consider sheaves of smooth functionals but the simple algebraic 
descriptions of morphisms and vector fields are no longer available. Additional conditions 
involving topology as well as differential calculus on the infinite-deimensional model spaces 
are required in both cases. In fact technical difficulties involved were overcome only in 
the case of real-analytic and complex-analytic supermanifolds [37,38] which essentially 
restricts possible physical applications of the theory. It is also not clear how to construct 
supermanifolds of maps and composition within this approach. 

The formalisms of both approaches seem to be technically too difficult when com- 
pared with relatively simple heuristic rules used by physicists even in most complicated 
geometrical supersymmetric models. This suggests that there might be a simpler theory 
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incorporating all desired features of the hitherto formulations but better suited for con- 
structing and analysing examples arising in physical applications. 

The aim of the present paper is to construct an alternative coalgebraic formulation of 
infinite-dimensional supergeometry which allows to avoid at least some of the technicalities 
of the functorial and the sheaf descriptions. The idea of such an approach was first proposed 
in the excellent paper by Batchelor [5] where a candidate for the dual coalgebra of the 
supermanifold of maps between finite-dimensional supermanifolds was constructed and 
analysed. 

For any associative algebra with unit (A, m, u), let us denote by A” the largest subspace 
of the full algebraic dual A’ such that m’(A”) c A” @I A”, where m’ : A’ -+ (A ~3 A)’ is the 
map dual to the multiplication m : A C_+ A + A. A” with comultiplication given by m’ and 
counit given by u’ is called the dual coalgebra of A. In the case of the algebra Coo(M) of 
smooth functions on a finite-dimensional manifold M, Coo(M)” is called the dual coalgebra 
of M and consists of all finite linear combinations of Dirac delta functions and their partial 
derivatives. In the context of finite-dimensional supergeometry dual @z-graded) coalgebras 
were first analysed and extensively used by Kostant in his theory of Lie supergroups [ 191. 

The idea of Batchelor’s approach is to consider the dual algebra of a supermanifold as 
a fundamental object. The crucial notion introduced in [5] is that of mapping coalgebra 
P (A, B) defined for any two finite-dimensional supermanifolds A, B in terms of universal 
coalgebra measuring the algebra of superfunctions on B to the algebra of superfunctions 
on A. Although the full structure theorem for P(d, a) has not been proven, the map- 
ping coalgebra has many expected properties of the dual coalgebra of the supermanifold of 
maps Map(d, a). In particular, the space of group-like elements of P(d, 23) coincides with 
Mor(d, a). Moreover, there exists a simple definition of composition which leads to the ex- 
pected Hopf algebra structure in the case of superdiffeomorphisms. Batchelor’s construction 
can also be extended to coalgebras corresponding to supermanifolds of sections. 

In the original paper [5], only the algebraic structure of mapping coalgebra has been 
analysed. This is certainly not enough to define supermanifold in terms of its dual coal- 
gebra. A pure coalgebra structure has to be supplemented by analytic data encoding a 
smooth structure on a supermanifold. These additional data are also necessary to select 
those coalgebra morphisms which correspond to smooth morphisms of supermanifolds. 
Extra conditions in the definition of morphisms may seem to be a shortcoming of the 
coalgebraic approach in comparison to the algebraic one where smooth morphisms can be 
defined in a purely algebraic way. Let us however recall that the simple algebraic definition 
does not work in the case of infinite-dimensional model spaces. Moreover, the detailed 
discussion of morphisms within Schmitt’s sheaf formulation of infinite-dimensional super- 
geometry shows that the coalgebraic structure is essential for an appropriate definition 
of smoothness or analyticity [37]. On the other hand (as we shall see in the following) 
the extra conditions one has to impose on coalgebraic maps are essentially identical to 
the differentiability condition one imposes on maps of sets in the traditional definition of 
smooth morphisms between manifolds. 

In the present paper we propose an intrinsic way to handle the additional analytic data 
necessary to describe smooth structures. The main result is the construction of the category 
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of smooth coalgebras which contains as its full subcategories both the BLK category of 
finite-dimensional supermanifolds and the category of smooth Frechet manifolds. This 
provides a complete theoretical framework of the coalgebraic formulation of supergeometry. 
Although Batchelor’s results [5] were our main motivation, we leave the construction of 
smooth structure on the mapping coalgebra P (A, B) for future publications. This involves 
in particular a construction of smooth atlas on the manifold Mor(A, a), which goes far 
beyond the scope of this paper. 

It should be stressed that the coalgebraic description of supermanifolds has its advantages 
even in the finite dimensions. First of all the general structure of the theory is similar to that 
of the standard smooth geometry: supermanifolds are defined as sets with extra structure 
and morphisms as maps of sets (with arrows in the “right” direction) preserving these 
structures. Secondly the direct product in the category is just the algebraic tensor product 
of coalgebras which makes many of the standard geometric constructions much simpler 
and more intuitive than in the sheaf or the functorial approaches. Finally the coalgebraic 
techniques proved to the very useful in Kostant’s theory of Lie supergroups [ 191. In fact this 
theory gets much simpler when smooth coalgebra morphisms are defined in the intrinsic 
coalgebraic language without referring to the algebraic formulation. 

The content of the paper is as follows. Section 2 contains preliminary material necessary 
for further constructions. In Section 2.1 the basic facts about symmetric tensor algebra 
S(X) of &-graded vector space X = Xc $ X1 are presented. In particular, Hopf algebra 
structure on S(X) is described and a less known universal property of S(X) with respect 
to its coalgebraic structure is proven. This property is crucial for our description of smooth 
coalgebraic maps. In Sections 2.2 and 2.3 we recall some properties of the model category 
fm of Frechet manifolds and the model category sm of BLK supermanifolds, respectively. 
In Section 2.4 the category of BLK finite-dimensional supermanifolds is briefly presented. 
This well-known material is included for notational purposes as well as for providing some 
motivation for further constructions. 

In Section 3 model category SC of smooth coalgebras is defined. In Section 3.1 we intro- 
duce open coalgebras as objects of the model category. In Section 3.2 we present a crucial 
(for all coalgebraic formulation) notion of smooth coalgebra morphism and prove that it 
satisfies all the required properties. In particular, the component description of morphisms 
is introduced and the formula for the composition is derived. In Section 3.3 the construc- 
tion of model category SC is completed and the direct product in SC is analysed. Finally, in 
Section 3.4, we prove that the model category fm of Frechet manifolds can be identified 
with the full subcategory sco of even open coalgebras, and the model category sm of BLK 
supermanifolds can be identified with the full subcategory SC< of finite-dimensional open 
coalgebras. This shows that SC is an appropriate extension of fm and sm. In Section 3.5 the 
notion of superfunction on an open coalgebra is introduced and analysed. 

In Section 4 we describe construction and main properties of the category SC of smooth 
coalgebras. In Section 4.1 the smooth coalgebra is defined as a collection of objects from 
the model category SC glued together with a collection of compatible morphisms from SC. 
Smooth morphisms of smooth coalgebras are defined along standard lines by requiring that 
their local expressions are morphisms from SC. The notion of superfunction on a smooth 
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coalgebra is defined and the functor from the category of smooth coalgebras SC to the 
category of sheaves of &-graded algebras is constructed. In Section 4.2 the direct product 
in the category SC is analysed. In Section 4.3 we prove that the full subcategory SC0 of even 
smooth coalgebras is isomorphic with the category of Frechet manifolds. In Section 4.4 the 
corresponding result for full subcategory SC’ of finite-dimensional smooth coalgebras and 
the category of BLK supermanifolds is derived. 

Appendix A contains definitions and basic facts about Z$-graded spaces (Appendix A. l), 
algebras (Appendix A.2), coalgebras (Appendix A.3) and bialgebras (Appendix A.4). Also 
some elementary material on dual coalgebras of finite-dimensional supermanifolds is briefly 
presented (Appendix AS). 

2. Preliminaries 

2.1. Symmetric algebra of graded vector space 

Definition 2.1.1. Let X = X0 @ X1 be a &-graded space. A symmetric algebra of X is 
a pair (S(X), 0) where S(X) is a Z2-graded commutative algebra and 8 : X + S(X) a 
morphism of &-graded space such that the following universal property is satisfied. 

For every &-graded commutative algebra A and every morphism Fo : X + A of Z2- 
graded spaces there exists a unique &-graded algebra morphism F : S(X) + A making 
the diagram 

0 
X - SW 

commute. 

The uniqueness of S(X) is a standard consequence of the universal property. The existence 
can be shown by explicit construction of S(X) as the quotient algebra 

l7 : T(X) + z-(X)/Z(X) = S(X), 

where (T(X) , 8~ : X -+ T(X)) is the tensor algebra of X and Z(X) is the ideal generated 
by elements 

a @ b - (-l)‘“iihib @ a, 

where a, b E X0 U X1, and 1 . 1 denotes the parity of an element. The ideal Z(X) is 
homogeneous with respect to the canonical Z2 @ Z+ bigrading on T(X) and S(X) acquires 
the structure of bigraded commutative algebra 

S(X) = @ $7X), 
k>O 
i=O.l 
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where Sk(X) = S,k(X) $ S!(X) is the kth symmetric tensor power of X. Since Z(X) is 
generated by elements of degree 2, one has the identifications 

S”(X) = TO(X) = R, S’(X) = T’(X) = x, 

and the canonical map 6’ = @ o f+ : X + S(X) is injective. 
The algebra S(X) is generated by the set (1) U X0 U XI, i.e. every element w E S(X) 

can be represented as a finite sum of monomials of homogeneous elements of X and 1. 

Proposition 2.1.1. Let X, Y be &-graded spaces and 8~ : X + S(X), 19y : Y + S(Y) 

the canonical inclusions into the corresponding symmetric algebras. Then the universal 
extension 

K : S(X $ Y) - S(X) 63 S(Y) 

of the map 

KO : X @ Y 3 (a, b) ---+ Qxa 63 1 + 163 @b E S(X) ~3 S(Y) 

is an isomorphism of bigraded algebras. 

Remark 2.1.1. By Proposition 2.1.1 for each &-graded space X = X0 CEI XI there is the 
canonical isomorphism of bigraded algebras 

i : SW0 cl3 Xl> ---+ S(Xo) 63 A(Xl), 

where S(Xc) is the usual symmetric algebra with its canonical Z+-grading and the trivial 
Z2-grading (S(Xo) t = (0}), and A( Yt ) is the usual exterior algebra of the vector space Yt 
with its canonical & $ Z+ bigrading. 

Proposition 2.1.2. Let X be a Z2-graded space and S(X) its symmetric algebra. Let A : 

S(X) + S(X) @ S(X) be the universal extention of the map 

d:X3a+a@l+l@aaS(X)@S(X), 

and E : S(X) - R the universal extention of the map 0 : X 3 a + 0 E R. 
Then (S(X), A, E) is a commutative cocommutative &-graded bialgebra. 

Remark 2.1.2. We shall introduce some notational conventions which will be used in 
various contexts in the following. 

A k-partition of the index set { 1, . . . , n) is defined as a sequence P = {PI, . . . , Pk) of 
disjoint (possibly empty) subsets of the index set such that (1, . . . , n} = PI U . s . U Pk. A 
k-partition is nonempty if Pi # 0 for all i = 1, . . . , k. Note that a nonempty n-partition of 
the index set [ 1, . . _ , n} is a permutation of { 1, . . , n}. 

Let X = {ai}yz2=l be a sequence of nonvanishing homogeneous elements of a graded 
space X. For every nonempty subset P of the index set { 1, . . . , n} we define 

ap =ap, ...ap, E S’(X), 
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where {pi, . . . , PI} = P and pt 5 . . . 5 ~1. We denote the number of elements of P by 
lPl.IfPisemptywesetap=1andlPl=0. 

For every k-partition P = {PI, . . . , Pk} of the index set { 1, . . . , n) we define the number 
o (X, P) = f 1 uniquely determined by the relation 

at *. .Uk = 0(X, P)Up, “‘Up,. 

Proposition 2.1.3. Let (S(X), A, E) be the coulgebru of Proposition 2.1.2, and X = 
{ai}:= be a sequence of nonvanishing homogeneous elements of a graded space X. Then: 
1. A(1) = 1 @ 1, and&(l) = 1. 
2. For every k 2 1 

Ak(u, . ..a.) = c o(X, P)u, C3 . . . @J up,+, (1) 

P=(PI.....Pk+lJ 

where the sum runs over all (k + 1)-partitions of the index set { 1, . . . , n}. 
3. &(Ul .*.un)=O. 

Proposition 2.1.4. The symmetric algebra S(X) of a &-graded space X with the coulge- 
bruit structure of Proposition 2.1.2 is a strictly bigruded cocommututive coulgebru. 

Remark 2.1.3. It follows from Proposition 2.1.4 that S(X) is a pointed irreducible coalge- 
bra. The relation between the Z+-grading S(X) = @EOS (X) and the coradical filtration 
S(X) = t&c Sk)(X) is given by _ 

SCk)(X) = 6 S’(X). 

The coalgebraic structure of S(X) introduced in Proposition 2.1.2 is universal in the 
following sense. 

Theorem 2.1.1. Let S(X) be the symmetric algebra of a R2-graded vector space X. There 
exists a unique extension of the bigraded commutative algebra structure on S(X) to a strictly 
bigruded commutative cocommututive Hopf algebra structure on S(X). 

Remark 2.1.4. The antipode s : S(X) + S(X) is given by the universal extension of the 

map 

- : x 3 a --+ -a E S(XJq 

where S(X), is the bigraded space S(X) with the “opposite” algebra structure given by 
Mop(a @ b) = (-l)l”lfblM(b @ a), uop = u. One can easily show that for arbitrary 
homogeneouselementsui,...,~, ??X,s(ul...a,)=(-l)“a,.‘.ul. 

Definition 2.1.2. Let (C, A, E) be a &-graded coalgebra, (A, M, u) a Zz-graded algebra, 
and Hom(C, A) the space of linear maps from C to A. For any f, g E Hom(C, A) we define 

f *g=Mo(f @g)oA. 
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By definition f * g E Hom(C, A) and If * gl = If1 + lgl (with respect to the standard 
&grading in Hom(C, A)). One easily verifies that Hom(C, A) with the multiplication * 
and the identity 1, = u OE is a Z2-graded algebra. The multiplication * is called convolution. 

The next theorem describes the universal property of S(X) with respect to its coalgebra 
structure. This result is essential for our description of smooth coalgebra morphisms given 
in the Section 2.2. 

Theorem 2.1.2. Let S(X) be the symmetric algebra of a &-graded space X and np: 
S(X) + S’(X) = X the projection with respect to the Z+-grading in S(X). Let C be 
a pointed irreducible &-graded cocommutative coalgebra and C+ the kernel of the counit 
EC in C. Denote by p+ : C+ + C the inclusion and by n+ : C + C+ the projection with 
respect to the direct sum decomposition C = l%{ p} @ C+, where p is the unique group-like 
element of C. Then: 
1. For every morphism @+ : C+ + X of &-graded spaces there exists a unique morphism 

@ : C + S(X) of Z2-graded coalgebras such that the diagram 

ir p x - S(X) t 
Qp+ I I a 

c+ pf c 

is commutative. 
2. The universal extension @ is given by 

@=*exp@+=C lD+k, 

k>O kl - 

where 

@+O E u 0 EC, 

~+~~@+o~+z+.*@+on+, k> 1, 
\ - 

and * is the convolution in Hom(C, S(X)). 

Note that in the purely even case X = X0 $ {0}, S(X) with respect to its Z+-graded 
coalgebra structure is isomorphic with the universal pointed irreducible cocommutative 
coalgebra considered in [40]. Part 1 of the theorem above is a &-graded version of Theorem 
12.2.5 in [40]. In the special case C = S(Y), where Y is a &graded space, the explicit 
formula for the universal extension has been derived in [37]. The proof given here is a 
generalization of Schmitt’s method. 

Lemma 2.1.1. With the notation of Theorem 2.1.2, for every k 2 0 the following relation 
holds: 
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AcI@+~= (@+i @ cD+~-~) o AC. 

Proc$ The case k = 0 is straightforward. Fork = 1 one has 

Ao@~+‘(c)=@+‘(c)@l+lcW~+‘(c) 

= 
c (@+l (C(1)) @ u 0 Wk(2)) + u 0 W(C(l)) 8 @+%(2))) 

Cc) 

= (cD+~ @I @+1-i) o AC(c). 

By definition of @+k 

Qfk = M o (Dfk @ @+‘) o AC = M o (CD+’ @ @+k) o AC, 

and 

#+k+l = M o (@+k @I @+I) o AC = M o (@+I @ O+k) o AC, 

for all k 2 1. Then by the induction hypothesis and (3) 

A o @+k+’ = A o M o (cD+~ @ @+I) o AC 

= (M 8 M) o (id 8 T @id) o ((A o Qfk) ~3 (A 0 @+I)) 0 AC 

= (M @I M) o (id @I T @ id) 

(2) 

(3) 

0 gl (@+I @ @+O + @+O @I a+‘>> 

o(&@&)o& 
=(M@MM) 

+ o+i B o+O B Q+k-i 63 @+I) 

o(id@TTid)o(Ac@A~)oAc. 

As a consequence of the coassociativity and cocommutativity of AC one has 

(id@T@id)o(Ac@Ac)oAc=(A~@A~)oA~. 

Using this relation and formulae (2) and (3) one finally gets 

k 
A o Q+k+l _ - cc > y (@+i+l m Q+k-I + @+i m G+k+l-i) o AC 

i=O 

=~(nf’)(@+i~@+k+l-i)oAc. 0 

i=O 
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Proof of Theorem 2.1.2. Existence. Let {C?)}kpo be the coradical filtration of C. For any 
given k > 0 all terms (l/Z!)@+ with 1 > k vanish on C@). By the structure theorem, 
Theorem A.3.2 (see Appendix A), for every c E C there exists k such that c E Cck), hence 
* exp @+ is well defined on C. By construction Q, = * exp @+ is a morphism of graded 
spaces such that np o @ o ,o + = @+. Using Lemma 2.1.1 one has 

(@+i @ @+k-‘) o AC 

=cc ;$(cD+~ @ Ofm) o AC 
@Orn?O . . 

=(@@@)oAc. 

Fork 2 1, @+k c S(X)+ = ker E and 

EO~=EOUOEC+CIEO~+k=FC. 
k?Ok! 

It follows that @ is a morphism of graded algebras which completes the proof of existence. 
Uniqueness. For any other extension @’ we have n ’ o @’ = rep o @ and therefore 

Im(@’ - @) fl P(S(X)) = (0). Since S(X) is pointed irreducible, @’ = @ by Proposition 
A.3.2 (see Appendix A). 0 

2.2. Model category of Fre’chet manifalds 

Let U c X, V E Y be open subsets of the FrCchet spaces X and Y, respectively, and 
+:U+ Vamap. 

Definition 2.2.1. The derivative of $ : U -+ V at a point u E U in the direction x E X is 
defined by 

Dlllr(u. x) = lim ~(’ + EX) - ~(‘) 
9 

6-0 E 

whenever the corresponding limit exists. One says that I,? is continuously differentiable or 
C’ on U if the limit exists for all u E U and x E X and if the map 

is jointly continuous (as a map on a subset of the product). 

Definition 2.2.2. The higher-order derivatives (k z 2) are inductively defined by 

D%(u; XI, . . . , -4 

=l im Dk-"bb+~xk;x I,... ,xk-l)-Dk-l$(u;x I,..., n&l) 
t+O C 

whenever the corresponding limit exists. 
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One says $ is Ck if Dk$(u; xl ,..., xk)exiStSfOralluEUandxl,..., xkEXandis 
jointly continuous as a map 

Dkll,:lA+x.:.x+Y. 

k 

A map I+? is smooth (C”) if it is Ck for all k > 0. 

If+isCkthenDk+(u;xl,..., Xk) is totally symmetric andlinearseparatelyinxl , . . . , Xk 
[ 161. It can therefore be extended in the second variable to the map 

Dk+ :u X Sk(X)3 (u;Xl . ..Xk)+ Dk+(u; xl,...,xk)E Y, 

where Sk(X) is the kth symmetric tensor power of X. In the following the same symbol 
Dk I++ will be used for the derivatives and for their extensions defined above. 

Using the chain rule and the Leibnitz rule for the first derivative [16] as well as an 
induction on k one gets the following: 

Proposition 2.2.1. Let U, V, W be open subsets of Fr&het space X, Y, 2, respectively, 
and 4 : U -+ V, + : V --+ W, Ck maps. Then the composition $ o 4 is a Ck map and for 
alll~l~k,uEU,andx~ ,..., XkEXonehas 

D”(+ 0 @)(u; xl,. . . , xl) 

D’vWW; D’%(u; xp,), . . . , D’Pi’@(u; xPi)), (4) 

where the sum runs over all ordered nonempty i-partitions of the index set (1, . . . , 1). 

Proposition 2.2.2. For all Ckfinctions f, g : U + R, 1 5 1 5 k and x1, . . . , xl E X one 
has 

D”(f . g)(u; xl, . . . , xk) = c DIP]’ f (u; xp,) . DiP2’g(u; x9), (5) 
1p1>41 

where the sum runs over all ordered two-partitions of the index set (1, . . . , 1) and the 
convention Do f (u; x0) = f(u) is used. 

Definition 2.2.3. The objects of the model category fm of smooth. FrCchet manifolds are 
open subsets U c X where X runs over the category of FrCchet spaces. 

For any two objects U, V E Ofm the space of morphisms Mfm(U, V) consists of all 
smooth maps @ : U + V. The composition of morphisms is defined as the composition 
of maps. An isomorphism in the category fm is called a diffeomorphism. 

We denote by fm’ the subcategory of fm consisting of all open subsets of finite- 
dimensional Fr&het spaces and all fm-morphism between them. 
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Let Cr = (U, Coo (.)) be the sheaf of smooth functions on U. A smooth map $ : U + V 
induces a morphism of sheaves of commutative algebras 

T = (llr, @I”) : c; - CF, 

where for each open V’ c V the algebra map @c, is given by 

I);, : C”(V’) 3 f ---+ f 0 $ E c”(~-‘(v’>). 

A morphism F = (F’, F,) : Cr + Cr of sheaves of commutative algebras is not 
in general of this form. However, for the finite-dimensional Frechet spaces one has the 
following proposition. 

Proposition 2.2.3. Let U E FP, V E R”’ be open subsets. 
1. For any morphism of sheaves of algebras 

F = (F’, F.) : CF ---+ CF, 

- 
F” : U + V is smooth and F = F”. 

2. For any algebra morphism A : Coo(V) + C”(U) there exists a unique smooth map 
$I : U + V such that $c = A. 

It follows that for U, V E Ofm’ one has the l-l correspondence 

Mfm(U, V) = Mfm<(U, V) 3 + ---+ I@; E Alg(COO(V), C”(U)>. 

This simple algebraic description of morphisms either as morphisms of sheaves of algebras 
or as morphisms of algebras of function is no longer valid for infinite-dimensional Frechet 
spaces. In this case the space of morphisms of sheaves of algebras is essentially bigger 
than the space of smooth maps of open sets. In order to characterize the sheaf morphisms 
corresponding to smooth maps one needs some additional not algebraical conditions. This 
makes the idea of ringed spaces in infinite-dimensional geometry rather awkward and dif- 
ficult to deal with [37,38]. This is also the main difficulty in developing a working infinite- 
dimensional extension of the Berezin-Leites-Kostant theory of supermanifolds which was 
originally developed as a theory of ringed spaces [8,19]. 

2.3. Model category of BLK supermanifolds 

Definition 2.3.1. The objects of the model category sm of supermanifolds are sheaves of 
&-graded algebras 

S Fi”,” = (U, C”(.> @ A(W)‘), 

where m, R are arbitrary nonnegative integers and U runs over all open sets of W . 
For any two objects S;/m,“, S: ,’ E Osm the space of morphisms Msm(S,““, S;‘,“‘) 

consists of all morphisms of sheaves of &-graded algebras. The composition of morphisms 
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is defined as the composition of morphisms of sheaves. An isomorphism in sm is called a 
superdiffeomorphism. 

(Rn)’ in the definition above denotes the space dual to W. An object SF,’ E Osm is called 
a superdomain of the superspace R” @ Rn. For each open subset U’ of the underlying set 
U the elements of the &-graded algebra S”‘,” (U’) = Coo (U’) 8 A&Y) are superfunctions 
on U’. According to the &-grading 

S”,“(U) = Sm9n(U)o @ S”,“(U)l, 

each superfunctions can be uniquely represented as the sum f = fo + fl of the even fo 
and the odd fl parts. A superfunction f is called even cod:) if fl = 0 (fo = 0). 

For each sm-morphism F = (F’, F) : Sf,“,” + Sr ,n the map F” : U -+ V is 
called the underlying part of F. In our notation, F. denotes the family of &graded algebra 
morphisms Fv~ : p’d(v’) _+ Sm,” v ( Fop1 (V’), where V’ runs over all open subsets of V. 
As a “super” counterpart of Proposition 2.2.3 one has [7,22,35]. 

Proposition 2.3.1. Let S;/m’n, Sr”“’ be superdomains. 

1. For any sm-morphism F = (F’, F) : Sg’* + SF’Vn’ the underlying map F” : U + V 
is smooth. 

2. For any morphism A : S”“,“‘(V) -+ Sn,” (Y) ,of Zz-graded algebras there exists a 
unique sm-morphism F = (F’, F) : SzXn, Sr T such that A = Fv. 

Remark 2.3.1. It follows from Propositions 2.2.3 and 2.3.1 that the covariant functor 

Osm 3 S;/m*n + U E Ofm’, 

Msm 3 F = (F’, F) + F” E Mfm’ 

has the right inverse 

Ofm< 3 U - CF = SF” E Osm, 

Mfm’ 3 @ - $ = (I+?, IJ?*) E Msm. (6) 

The image of the functor above coincides with the subcategory smo of sm consisting of all 
objects of the form S:‘” and all sm-morphisms between them. It follows that the model 
category of finite-dimensional manifolds fm’ can be regarded as the full subcategory smo 
of the model category of BLK supermanifolds. 

Let {UcL}zzl be a standard basis in W’. The functions U@ : Rm > U 3 u -+ up E R 
uniquely defined by u = XI*“=1 u@U, are called the standard coordinates on U c [Wm. 

Let {Q(Y}z=, be the standard basis in (R”)‘. The collection {u’, . . . , 01, . . . , 0”) regarded 
as a subset of Sm%n(U) = C”(U) @ A(W)’ is called the standard coordinate system 
on S:‘“. In the standard coordinates every superfunction f E S”‘%“(U) has a unique 
representation 

f = f(u, 0) = f0(4 + $(u, 0) + f/vu, @I, (7) 
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and f”(u>, fol:...ak (u) E C”(U). The coefficient functions f$.,,(yk (u) are assumed to be 
totally antisymmetric in their indices. In the decomposition (7), f’(u) is called the un- 
derlying and f A (u, 0) = f,^(u, 0) + ft (u, 0) the exterior part of the superfimction 

.f* 
Note that for an arbitrary sm-morphism F = (F”, F) : S;/“‘” -+ L$~“’ and any super- 

function g E Sm’,n’(V) one has 

(Fvg)’ = Fv(g’) = go o F”, (Fvg); = Fv(g;)t 

but in general (Fvg).;\ # Fv (gf ). 

Definition 2.3.2. Let {u’, . . . , urn, @I,. . . , f3”) be the standard coordinate system on Sum*“. 
For each open subset U’ c U the partial derivatives of a superfunction f E S”,” (U’) are 
defined by 

where pi means that P is omitted. 

In the following we shall also use the compact notation (x’}~$ for the standard coordi- 
nate system (u~)~=, U {V)&, on SzVn, where 

for I = 1 
XI = & forI =;,.;” 

( 3 ., m+n 

Accordingly, for the partial derivatives one has 

a 

a, = aui 1- forZ=l,...,m, 

- forZ=m+l,...,m+n. 
a@-m 

Let {&}i=, be the basis in W dual to the basis {P}~=, . Then {.?rl~~~ = {UP)~=t Ur&&, 
is the standard basis in the &graded space R” @ IV. 
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Definition 2.3.3. Let f E S”,“(U) and a = Catit E IWm $ IWn. The first derivative of the 
super-function f in the direction a is defined by 

D’f(u, 8; a) = C a’i3tf(u, 0). 
I=1 

Forat,..., ak E [w” @ Iw” the higher order directional derivatives are given by 

m+n 

Dkf(u,e;al,...,ak)= C a:‘...a~al,...a,f(u,e). 
t,,...,tk=1 

The kth-order differentiations (k 1 1) are defined as the underlying parts of the &h-order 
directional derivatives: 

m+n 
fi’f(u;al,...,ak)= c II 

a1 . . . a? (at, .**J,f)O(u). 
11,....1~=1 

The higher directional derivatives and differentiations are totally antisymmetric in the 
variablesat,..., ak and therefore can be uniquely extended (in the second variable) to linear 
functions on the kth graded symmetric tensor power Sk(Rm @ rW”> of the &-graded space 
[W* CB P. With this interpretation one can use the notation of Remark 2.1.2 for arguments 
of multilinear functions. 

Using the graded Leibnitz rule for first derivatives and induction on k one gets the fol- 
lowing multiple Leibnitz rule for superfunctions. 

Proposition 2.3.2. Let f, g E S”~” (U) be super-functions and X = (ai}:=, a sequence of 
homogeneous elements of the graded space lV CB [w”. Then 

Dk(f + g>(u, 8; al 1 . . . , ak) 

= c 0(X, P)(-l)‘f”aP2’D’Pl’f (u, 0; ap,) . D1f21g(u, 8; apz), (8) 
P=(P1,P21 

where the sum runs over all 2-partitions of the index set (1, . . . , k}, and the notation of 
Remark 2.1.2 as well as the convention Do f (u, 8; xn) E f (u, 0) are used. 

The standard coordinate system on Sz,” generates the subalgebra of superfunctions with 
polynomial coefficients. With the topology of uniform convergence on compact subsets 
this is a dense subalgebra of S”J(U). The following proposition [7,22,25,35] says that 
the standard coordinates behave as algebraic generators with respect to &graded alge- 
bra morphisms. This property is essential for the coordinate description of morphisms 
in sm. 

Proposition 2.3.3. Let {x’)~~~ and {~~}l;ll\~’ be the standard coordinate systems on Sum,” 

and Sr’,nt, respectively. Let (F J ]yly’ be a collection of supperjunctions on Sum”’ such 
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thatFJ isevenfor J = l,...,m’, FJ isoddfor J = m’+ l,...,m’+n’, andthe 

map 

F” : II 3 u + (F”(u), , . . , F”“(u)) E aBm 

has its image in V c R”‘. 

Then there exists a unique sm-morphism F = (F’, F) : Sr,” --+ S$,” such that 

Fv(yJ) = F-‘(u, O), J = 1,. . . ,m’+n’. (9) 

The superfunctions F J (u, 19) = Fv(yJ) are called the coordinate representation of the 
sm-morphism F = (F’, F). Formula (9) is frequently written in the following somewhat 
incorrect but more intuitive form: 

u” = F”‘(u) + 2 ; 2 F$_ (u)q”’ A . . . A Qak, v = 1,. . . , m’, 
k=2 . OLI ,....ak=l 
WC” 

VB = 2 $ 2 F~,~,.,k(~)P A . . . A Oak, B = 1, . . . , n’. 
k=l 
odd 

’ (Yl,...,cUk=l 

Proposition 2.3.4. Let {x’}~~~ and {y ) J=l J m’+n’ be standard coordinate systems on Sz3n 

and SF”“‘, respectively. Let F = (F’, F) : SE,n + Sl;‘3n’ be an sm-morphism with the 

coordinate representation {F J (u, e)}ylT’. 

Then for any superjiinction g E Sm’,n’(V), and any sequence X = {al, . . . , Uk} of 
homogeneous eEements of R” CB 53’ one has (Fvg>‘(u> = go o F’(u), and 

bk(Fvg)(u; al,. . ., ak) 

=g c o(X, P)fitg(FO(u), fi”l’F(u, up,), . . . , fi’P’F(u, aPI)), (10) 
lPI.....P/l 

P;#fl 

where the sum runs over all nonempty partitions of the index set (1, . . . , k], and for each 
u E u, 

m’+n’ 

~‘P”F(u,aP,) = c b “I’FJ(u, ap,)yJ E Rm’ CD R”‘. 
.I=1 

Proof For all even al, . . . , ak E R” @ {o} formula (10) is the multiple chain rule for Frechet 
manifolds (Proposition 2.2.1) applied to the function go o F’(u). 

Foralloddat,..., ak E (0) @ Rm formula (10) is equivalent to the standard Taylor 
expansion for the pull-back of a superfunction [7,22,25,35]. Indeed, let 

Fvg(u, e> = Fvg'(u) + 2 .i 
k=l k! 

2 Fv&,...,k(u)ea’ A. . . A eak , 
(I, ,...,(Yk=l 
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be the coordinate expression for the superfunction Fvg, and {&)t=, the standard basis in 
W. Then the coefficients of the representation above are given by 

Pv~&...,~ (u) = fi’PVg(u; &,, . . . , &, 

0(X, P)~‘g(F”(u), F:, (~1, . . . , f,:(4), (11) 

where X = (!&, . . .,&,}andforeachsubsetP = {at,...,cri)(crt < ... < oi)ofthe 
indexset{l,...,k) 

F,“(u) = c b”‘FJA(u, &,, . . . , &)jJ 

J=l 

d+d 

J=l 

The general case can be derived from formula (11) by differentiating in even directions. 

Formulae (10) and (11) suggest the following slightly modified description of an sm- 
morphism. 

Definition 2.3.4. Let ( FJ (u, I!?))::?’ be the coordinate representation of an sm-morphism 

F = (F”, F,) : S;,n + Sr;‘.“. For every k > 1 the kth infinitesimal component of F = 

(F’, F.) is defined by 

Fk+ : u X Sk([Wm @ [w”) 3 (U, al . . .Uk) 

Fd+d 

-c 
bkFJ(u; al ,...,ak)jJ E[Wm’$[Wn’. 

J=l 

The restriction of the map Fk+ to U x AIR” c U x Sk(Rm @ R”): 

m’fn’ 

F; : u X AkRn 3 (U, (1 . . .&) - c fikFJ(u; cl,. . . , (k)jjJ E [w”’ @ Rn’ 

J=l 

is called the kth exterior component of the sm-morphism F = (F’, F.). 

As a simple consequence of the definition and Proposition 2.3.3 one has the 
following: 

Proposition 2.3.5. Let {x1}::+: and (yJ}‘;‘I=;“’ be standard coordinate systems on S;l”‘” 

and SF““‘, respectively. Let @ . ’ . [Wm > U + V c R”’ be a smooth map and {@$}fzl a 
family of smooth maps 
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CD; : u x AkW -_, R”’ $ Fe, 

linear and even in the second variable. 
Then there exists a unique sm-morphism F = (FO, F) : S:“’ -+ S$“’ with underlying 

part F” = CD’ and exterior components Fp = @t; k = 1, . . . , n. 

Remark 2.3.2. The underlying part and the exterior components of an sm-morphism F 
contain essentially the same data as the coordinate representation of F. The virtue of the 
description in terms of exterior components is that it is independent of the choice of basis in 
the model superspace and as we shall see in the Section 2.4 that it can be easily generalized 
to the infinite-dimensional case. Here we shall consider composition of sm-morphisms is 
this language. 

Let G = (Go, G.) : ST’,“’ -+ S$‘%“” be another sm-morphism, and {zK}F>fil the 

standard coordinate system on StF(“n”. For the underlying parts one has 

(G o F)’ = Go o F”. 

The coordinate representation of the composition G o F : SG’” + S$‘sfl” is given by 

(GO Ff = (GO F)W(zK) = Fv(GW(zK)) = Gv(FK). 

Calculating the RHS by formula (11) and using Definition 2.3.4 one gets the following 
expression for the exterior components of the composition 

(G 0 F)A(u, (I, . . . , 4%) 

=g: c 0(X, P>G+(F”W, F”‘(u, CP,>, . . . , FA(u, <P[)). (12) 
. IP, . . . ..P/l 

Pi#M 

Let us note that the exterior components of the composition depend on the infinitesimal 
components Cl of G and therefore involve partial derivatives in even directions of the 
exterior components Fk. This property of composition of sm-morphisms is responsible for 
most of the peculiar features of supergeometry. In particular, this is the reason for which 
smooth structures and FrCchet spaces are indispensable. 

2.4. BLK supermanifolds 

Definition 2.4.1. A supermanifold modelled on the superspace Rm $ R” is a sheaf & = 
(M, A(+)) of &-graded algebras on a Hausdorff topological space M such that for each 
p E M there exist an open neighbourhood U of p, and an isomorphism of sheaves of 
&-graded algebras 

F = (F’, F,) : du - S;;&), 

where Au = (U, A(.)) is the restriction of dM to U, and Sz&, is a superdomain, i.e. 

@O(U) is an open subset of lFP and S’$&, = (@O(U), Cm(.) 6%~ A(W)‘). 
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Definition 2.4.2. The objects of the category SM are supermanifolds modelled on super- 
spaces R” $ W’ where m, n 2 0. 

For any two objects AM, f3~ E OSM the space of morphisms MSM consists of all 
morphisms of sheaves of Z2-graded algebras. The composition of SM-morphisms is defined 
as the composition of morphisms of sheaves. 

Let AM be a supermanifold. The collection {(U,, Fa)JaE1 of isomorphisms of sheaves 
of &-graded algebras 

Fa = (F,o, Fa) : du, + S’$” F,.(G) 

such that {I!I~)~~I is an open cover of M is called an (m, n) - atlas on -AM. 
Let {(U,, FOI))(YEr be an atlas on a supermanifold dM. Then by Remark 2.3.1 the col- 

lection (Fi}(YEt is a smooth atlas on M. By the same token different atlases on -AM lead 
to compatible atlases and M acquires a unique smooth structure. M with this structure is 
called the underlying mantfold of dM. 

One has the following global version of Proposition 2.3.1 [7,22,25,35]. 

Proposition 2.4.1. Let AM, t?~ be super-manifolds. 
1. For any SM-morphism F = (F’, F.) : AM + BN the underlying map F” : M + N 

is smooth. 
2. For any morphism A : B(N) + d(M) of Z2-graded algebras there exists a unique 

SM-morphism F = (F’, F,) : dM + f?~ such that A = FN. 

Let F = (F’, F.) : AM + BN be a morphism of supermanifolds and ((V,, , G,)},,J 
an atlas on BN. Then there exsists an atlas {(U,, F,)),Et on dM such that for all cz E I 
there exists (a normecessarily unique) (Y’ E J for which F’(U,) c V,!. The family of 
sm-morphisms ( F,,/},Et defined for each cx E I by 

is called a representation of the morphism F = (F’, F,) : -An/r -+ BN in the atlas 

{(vY, pY)]yEJ on BN. 

Proposition 2.4.2. Let {(U, , Fa)&t be an (m, n)-atlas on a supermanifold AM, and 
{(V,, Gy)JyE J an (m’, n’)-atlason a supermanifold BN. Let (Folor~}uEt be afamily of maps 
such that: 
1. for all a! E I, F,,! : SF;;” ) + S,$‘;“:) ) is an sm-morphism; 

CX’ 
2. for all CX, B E Z such thlt ;a n Up 2 0 one has 

FcyBf = Gg’ o G,,’ o F,,, o Fa o F -1 
B . 

Then there exists a unique smooth morphism F = (F’, F.) : dM + t?N of supermani- 
folds such that { FUOlf&t is a representation of F in the atlas {(V,, , G,)},,J. 
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Definition 2.4.3. Let {U,, cp,},E~ be an admissible atlas on a smooth manifold M of di- 
mension m. Let { F,B)~~~ be a collection of maps such that 
1. for all a! E I, /I E Z(a) = {/? E Z : U, n f!Jfi # 0) 

is an isomorphism of superdomains such that F$ = V&4 O(P,-‘; 
2. for all cx E I, Faa = idSmSn ; 

RY(Gl) 
3. for all o, #?, y E Z such that U, n Up tl Uy # 0, Fbv o Fcyp = Far on S~~U~nUPnU,j. 
A collection { F,P)~~I with the properties stated above is called an (m, n)-cocycle of tran- 
sition sm-morphisms over the atlas {U,, (P~)~~~ on M. 

Two cocycles { FA,B,)(ylEt, {F$,B,,)(Yf~E~ II of transition sm-morphisms on M are said to be 
compatible if there exists a third one { F,B}~~~ such that 

as sets of maps. 

Proposition 2.4.3. Let { F,B)~~~ be an (m, n)-cocyle of transition sm-morphisms on M. 
Then there exists a unique super-manifold AM with the underlying manifold M and with the 
(m, n)-atlas {(U,, FE)),,1 such that 

foralla! E I,/3 E Z(a). 
Compatible (m, n)-cocycles of transition sm-morphisms on M lead by the construction 

above to the same supermanifold AM. 

The supermanifold AM and the (m, n)-atlas ((Ua, FOL))(YEt of the proposition above are 
said to be generated by the (m, n)-cocycle { F,B)~~I. 

3. Model category 

3.1. Objects 

Let X be a vector space. The group-like Hopf algebra G(X) of X is the free vector space 
RX of X (i.e. the vector space over R containing X as a basis) endowed with the trivial 
z2 @ iz+ grading 

fork = i = 0, 
otherwise, 

and with the Hopf algebra structure given by 
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Mc(x C3 Y) = x + y, UC(l) = 0, 

AC(X)= X8X, &G(X)= 1, SG(X)= -x 

109 

for all x, y E X (+, o, - stand for the addition, the zero vector, and the inverse in the vector 
space X). One can easily verify that G(X) is a pointed bigraded commutative cocommutative 
Hopf algebra. The direct sum decomposition into irreducible components takes the form 

G(X) = @Rx, 
XEX 

where [wx is a one-dimensional subcoalgebra generated by the group-like element x E X c 
G(X). For every subset U c X the free vector space IWU is a bigraded subcoalgebra of [WX, 

W=$Iwxc[wx. 
xeu 

[WU with the induced bigraded coalgebra structure is called the group-like coalgebra of U. 

Definition 3.1.1. Let X = Xc @ Xt be a graded space. The tensor product 

Dx = (3x0) 63 S(X) 

of the group-like Hopf algebra G (X0) of Xc and the symmetric algebra S(X) of X is called 
the Hopf algebra of the graded space X. 

The Hopf algebra structure on 23~ is given by 

MH((U~'(y)~((w~~B>)=(U+W)~~.~, 

UH(1) = 08 1, 

AH(~ @Q) = c(u @ql)) 63 (u @q2)), 

(a) 

&H(u @a)=@ '%&(U@U)=&(a), 

sH(u @a) = SG '8'(U @Ma)= (-U)@JS(a), 

for all U, w E X0; o, #I E S(X), where E is given by Proposition 2.1.2, and s by Remark 
2.1.4. By definition of G(Xu) and Theorem 2.1.1, Dx is a pointed bigraded commutative 
cocommutative Hopf algebra. Since G(Xu) is generated by group-like elements and S(X) 
is pointed irreducible one has the following decomposition into irreducible components: 

where Dx, = [wu @ S(X) E S(X) for all u E X0. 
The subcoalgebra V,Q, is a strictly bigraded Hopf subalgebra of 27~. It acts on 2)~ by 

the left and right multiplication. In particular using the identification VX, g S(X) one gets 
the right action of S(X) on Dx, 
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By construction each irreducible component is stable with respect to R and for every u E X0 
the map 

is an isomorphism of bigraded coalgebras. For the sake of simplicity we will write u for the 
group like element u @ 1 E 27,. With this convention X0 c D)x and u @ (II = u . a for all 
U@UEVX. 

Definition 3.1.2. Let Dx be the Hopf algebra of a graded space X = X0 CD Xl, and U a 
subset of X0. The subcoalgebra D,x(U) c 23~ 

is called the subcoalgebra over U . 

In the case of a graded Frtchet space, i.e. a topological direct sum X = X0 @ Xt of 
FrCchet spaces, the subcoalgebra Dx(U) over an open subset U c X0 will be called an 
open subcoalgebra of Vx. 

By definition, for any U c X0 the subcoalgebra Vx(U) over U is the tensor product of 
bigraded coalgebras Vx (U) = G(U) ~3 S(X). As the direct sum of irreducible components 
of VX it is stable under the S(X) right action. 

3.2. Morphisms 

Let X, Y be graded spaces and Vx (U), Vy (V) subcoalgebras over U c X0 and V C 
Ya, respectively. Let 0 : 27, (U) + VD~ (V) be a morphism of graded coalgebras. CD sends 
group-like elements into group-like elements and irreducible components into irreducible 
ones. It follows that @ is uniquely determined by the map 

UxS(X)3u@a~@(u@a)EVxS(Y), (13) 

where the Cartesian products U x S(X), V x S(Y) are identified with the subsets of 
VX (U), 27)~ (V) by the inclusions 

UxS(X)3(u,cr)-u~~=u~~a!vx(U), 

u x S(Y) 3 (24, p) - u 63 p = 2,. /3 E Vy(V). 

Note that the map (13) can be regarded as the family {@U}UEu of &-graded coalgebra 
morphisms 

@,:Vx, 3u~CY--+@(u~a)Evx@(,). 

Since each irreducible component of Vy (V) is isomorphic to the bigraded coalgebra S(Y) 
the universal property of the symmetric Hopf algebra can be used for a more detailed 
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description of @. In order to study various properties of graded coalgebra morphisms it is 
covenient to introduce the following definition. 

Definition 3.2.1. Let X, Y be Z2-graded spaces and Dx(U), 27~ (V) subcoalgebras over 
U c Xc and V c Yo, respectively. Denote by TC : V x S(Y) + S(Y), resp. ny : S(Y) + Y 
the canonical projections on the second factor, resp. on S’ (Y) = Y. Let @ : D)x (U) + 
Vy (V) be a morphism of Z$-graded coalgebras. The maps 

@O : u 3 u ---+ Q(u) E v, 

@+ : u x s(x)+ 3 (u, ,6) - icy 0 n(O(u . j?)) E Y, 

@” : u x A(x1)+ 3 (24, y) - Try oTr(@(u . y)) E Y 

and called the underlying, the infinitesimal, and the exterior parts of @, respectively. 
For every k 2 1, the restrictions 

@kf : u x ,x x ’ 1. x x, 3 (u, al, . . . )  Uk) --+ Jcy 0 n(@(u . a1 . . .Uk)) E Y, 

k 

@/ : u x x1 x ... x x1 3 (td,eI, . ...&) - nty On(@(u .<I ...&‘k)) E Y , , 
k 

are called the kth infinitesimal and the kth exterior components of @, respectively. 

For all k > 1 the infinitesimal and the exterior components of a Z2-graded coalge- 
bra morphism are totally symmetric and even. By the universal property of the symmet- 
ric tensor product the infinitesimal @k+ and the exterior @t components uniquely extend 
to maps on U x Sk(X) and U x Am, respectively, which are linear and even in the 
second variable. For the sake of simplicity the same symbols will be used for the com- 
ponents and for their extensions above. Note that the infinitesimal @+, and the exterior 
QA parts of @ are uniquely determined by their components, (@l}krt, and (@t}kzI, 
respectively. 

The following proposition is a consequence of the universal property of the symmetric 
algebra with respect to the coalgebra morphisms (Theorem 2.1.2). It asserts that a morphism 
@ : 27x(U) --+ D)Y( V) of Z2-graded coalgebras is uniquely determined by its underlying 
and infinitesimal parts. 

Proposition 3.2.1. Let X, Y be Zz-graded spaces and Vx (U), Dy (V) subcoulgebrus over 
U c X0 and V c Yo, respectively. Let @+ : U x S(X)+ + Y be a morphism of &-graded 
spaces in the second variable, and C$ : U + V an arbitrary map. 

Then there exists a unique morphism 0 : DX (U) + DY (V) of &-graded coulgebrus 
such that Q” = c$, and CD+ = $+. 

Moreovel; for every u E U, a E S(X) 

@(u, a) = 4(u) ’ *exp&(a), (14) 
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_ 

Jr+ : S(X) --+ S(X)+ denotes the canonical projection, and * is the convolution in 

Ho@%, , W)). 

It follows that a &graded coalgebra morphism @ : 27x(U) + 27~ (V) is uniquely 
determined by the underlying map Do and the infinitesimal components {@k+}k>l . In the 
following definition we introduce the notion of smooth coalgebra morphism by imposing 
some additional requirements on the maps O”, {@kf }kl~. 

Definition 3.2.2. Let X, Y be &-graded FrCchet spaces and Dx (U), Dy (V) open subcoal- 

gebras of ‘Dx and ‘Dy, respectively. 
A morphism CD : DX (U) -+ Vy (V) of &-graded coalgebras is said to be smooth if the 

following conditions are stasified: 
The underlying part Q” : U + V is a continuous map and for all n E Xu, u E U, the 
directional derivative D’@‘(u; x) exists. 
For every k 2 1, the kth infinitesimal component 

is jointly continuous with respect to the Cartesian product topology on U x XXk and the 
directional derivatives D’ @k+ (u, al, . . . , ak; x) with respect to the first variable exist for 

allx E XO,U E U,ai E X. 
For every u E U, x E X0, ai E X the following relations hold: 

D’@‘(u; x) = @,‘(a, x), (15) 

D’Okf(u, ~21, . . . , uk; X) = @k++,(U, Ul, . . . , ak, X). (16) 

Proposition 3.2.2. Let 0 : 29)~ (U) + D)Y (V) be a smooth morphism of Hz-graded coul- 
gebrus and {xj)j=l an arbitrary sequence of elements of X0. 

1. The underlying part 0’ : U + V of @ is a smooth map and for every u E U the lth 
order partial derivatives satisfy the relation 

D’@‘(u; x1, . . . , xl) = @,+(u, x1, . . . , xl). (17) 
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For every k 2 1 the kth exterior component @: of 0 is a smooth map. For every u E U, 
ci E Xl the lth order partial derivatives with respect to the first variable are given by 
the formula 

Dl@/‘(U,~l,..., &fk;Xl,..., x1)=@k+f#,h ,..., <k,Xl,..., Xl). (18) 

For every k 5 1 the kth infinitesimal component @k+ of @ is a smooth map. For every 
u E U, ai E X the lth order partial derivatives satisfy the relation 

D’@k+(u, al, . . , ok; Xl, . . . , XI) = @k++lb, al,. . . , ak, Xl, . . . , xl>. (19) 

ProoJ 
1. By condition 1 of Definition 3.2.2 the directional derivative D’@‘(u; x) exists for all 

u E U and x E X0. By condition 3 one gets relation (17) for 1 = 1. Since by condition 2 
the first component of @+ is jointly continuous on U x X so is D’ Q” on U x X0, hence 
Q” is Cl. The Cl smoothness and relation (17) for arbitrary 1 follow from induction on 1. 

2. Let us fix k > 1. Repeating the reasoning above one gets that @: is C1 separately in the 
first variable and relation (18) holds for 1 = 1. But @t is linear in the second variable 
and by condition 2 of Definition 3.2.2, jointly continuous. It follows [16] that @c is 
jointly C' . The induction on 1 yields the @-smoothness and relation (18) for arbitrary 
xi E Xc and for all 1. 

3. It is a straightforward consequence of conditions 1 and 2. 0 

Let ‘Dx (U), LDy (V) be open subcoalgebras. For k > 1 and Xt # {0} we introduce the 
space Ct (Vx (U), 27, (V)) of all smooth maps 

which are k-linear, totally symmetric, and even in the second variable. Note that in the 
definition above X 1 is regarded as a purely odd graded Frechet space {o} $X1. Thus the maps 
+k are totally antisymmetric in the usual sense. Let C$(D,y (U), Vy (V)) = C”(U, V) be 
the space of all smooth maps from the open subset U c X0 to V c YO and 

C^(DX(W> ~YW>) = k~oc~Pxm DYW>). 

For XI = [o} we put C”(Z~,X(U), l&(V)) = C”(U, V). 
As a consequence of Propositions 3.2.1 and 3.2.2 one gets the following characterisation 

of the space Mor(Dx (U), DDE (V)) of all smooth morphisms @ : DX (U) + 27, (V) of 
open subcoalgebras 

Theorem 3.2.1. The map 

MM%(U), DYW)) 3 @ - (Go, @p, @t,. . .I E C”(~x(U), ~YW)> 

is bijective. 
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In order to complete the construction of the model category we shall show that the 
composition of smooth coalgebra morphisms is smooth. For this purpose we start with the 
description of the composition of Zz-graded coalgebra morphisms in terms of components. 

Proposition 3.2.3. Let @ : 27,x(U) + Vy (V), p : Dy (V) + Vz (W) be morphisms of 
&-graded coalgebras. The underlying part (p o @)’ and the kth injinitesimal components 
(p o @J): of the Z2-graded coalgebra morphism p o @ : DX (U) + Dz (W) are given by 

(!& 0 @)O = p” 0 @O, 

and 

(@ 0 @)l(u, al,. . . 
k 1 

Tak)=xc c ‘=(X,p> 
i=l lP1 ,..,,pi t 

lpi lb0 

Xpi+(@o(U>, @;tp,l(u, ap,), . . . , @&J(U, aPi>>, (20) 

where the sum is over all nonempty partitions P = (PI, . . . , Pi ) of the index set (1, . . . , k) 
and the notation of Remark 2.1.2 is used. 

Proof According to Definition 3.2.1 the kth infinitesimal component of ly o 0 is given by 

Wy.@)k+(u,al,..., ak)=nyOnO~Oo(u.al...ak). 

Representing 0 in the formula above in terms of its infinitesimal components (Proposition 
3.2.1) and using explicit form of comultiplication in S(X) given in Proposition 2.1.3 one 
gets the result required. 0 

Theorem 3.2.2. Let X, Y, Z be &-graded Frechet spaces and Vx (U), I&(V), V,Z( W) 
open subcoalgebras of Vx , Vy and VZ. respectively 

Zf @ : Vx(U) + Vy(V), P : Vy(V) + VZ (W) are smooth morphisms of &-graded 
coalgebras so is their composition p o @ : 2)x(U) + VZ( W). 

The underlyingpart of q o 0 is the composition of underlyingparts (U o CD)’ = q” o @‘. 
The kth exterior component of w o 0 is given by 

where the sum is over all nonempty partitions {PI, . . . , Pi} of the index set { 1, . . . , k). 

Proof By Proposition 3.2.2 p”, 0’ are smooth maps so is their composition (@’ o @)’ = 
W” o cP”. By Proposition 3.2.3 the kth infinitesimal component (W o 0): can be expressed 
as a finite sum of compositions Wiui+ o (@&, x . . . x CD&,) o f’, where 



2. Jaskdbki/Journal of Geometry and Physics 29 (1999) 87-150 

- (U,qp*I) x ... x (u, alPil) E k (u x X"~~l). 
j=l 
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Since 9 is smooth with respect to the Cartesian pproduct topology the smoothness of 
(@ o @)l follows from the smoothness of Pi’ and QT. 

It remains to check condition 3 of Definition 3.2.2. Using relation (15) for !P” and Q” 
and (20) fork = 1 one gets 

D’(9 0 @)O(u; x) = D’w”(@o(u); D’@O(u; x)) 

= !q(aJO(u), @lf(u; x)) = (P 0 @);(u, x), 

for all u E U, n E X0. Hence relation (15) of Definition 3.2.2 is satisfied. 
Differentiating expression (20) for the kth infinitesimal component (@ o @)l and using 

relations (15) and (16) for components of P and @ one has 

D’(p 0 @)l(U, al,. . . , ak; x) 

=e; c 0(X, P> 
i=l IPI....,Pi I 

I&l>0 

j=l 

k+l 

c 

1 
= 

c 
i=* (i - l)! (PI P.-II 

cr(X, P) 

I‘pi;:o 

i=l -. lPl....,P,l 
IP, I>0 

i 

j=l 

cw’, &>q+(@“(u), @&((U, U&h . . . , @;tei,(U, ug,)) 

= (* 0 @>,=,(u, al, . . . , ak, x>, 
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whereP=(Pt ,..., Pi}andQ={Qi ,..., Qi ) are partitions of the index sets { 1, . . . , k} 
and (1,. . . , k + l}, respectively, and X’ = (al,. . . , ak+l}, ak+l = x. 

Formula (21) is a special case of (20). 0 

3.3. Direct product 

The considerations of Sections 3.1 and 3.2 leads to the following definition of the model 
category. 

Definition 3.3.1. The objects of the model category SC of smooth graded coalgebras are 
open subcoalgebras Vx (U) where X runs over the category of graded Frechet spaces and 
U over all open subsets of the even part Xo of a graded FrCchet space X. 

For any two objects Vx (U), Dy (V) E Osc the space of morphisms Msc(Vx (U), Dy (V)) 
consists ,of all smooth coalgebra morphisms @ : Vx (U) + Vy (V). 

The composition of morphisms in SC is defined as a composition of coalgebra maps. 
An isomorphism in the category SC is called a diffeomorphism of open subcoalgebras. 

We shall show that in the model category defined above the direct product exists. We start 
with the corresponding result for the category of Z2-graded cocommutative coalgebras [40]. 

Theorem 3.3.1. Let (C, AC, EC), (V, AD, ED) be Zz-graded cocommutative coalgebras. 
Define the maps 

Then nc, rD are Zz-graded coalgebra morphisms andfor every &-graded cocommutative 
coalgebra (E, AE, ED) and morphisms of &graded coalgebras @c : E -+ C, and @D : 
& + D, there exists a unique morphism of &-graded coalgebras @ : E + C @ 2, making 
the diagram 

c 

commute. The &-graded coalgebra morphism @ is given by @ = (0~ & @D) o AE. 

(22) 

Definition 3.3.2. Let VX (U), Vr (V) E 0.x. The tensor product Vx (U) @ Vr (V) E Osc 
is defined as follows: 
1. With respect to the coalgebra structure VX (U) @ Vr (V) is the tensor product of graded 

cocommutative coalgebras. 
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2. With respect to the topological structure Dx(U) 8 TDy (V) is identified with an open 
subcoalgebra of Vxe y by the canonical isomorphism 

where the direct sum topology on X @ Y = (Xo @ Yo) $ (Xl @ Yt) is assumed. 

Calculating infinitesimal components and checking the conditions of Definition 3.2.2 by 
explicit calculation of directional derivatives one gets the following: 

Proposition 3.3.1. 
1. Let @ : 2)x(U) + Vy(V), @’ : D,-p(U’) + Vy/(V’) be smooth morphisms of open 

subcoalgebras. Then the tensor product of Hz-graded coalgebra morphisms 

@@@‘:VX(U)@VZ)X~(U’) 3m@m’ 

+ G(m) @ @‘(m’> E Y&(V) @ Z+(V’) 

is smooth. 
2. Let EU, Ev be counits of open subcoalgebras Vx(U), and Vy(V), respectively. Then 

the maps 

Pu = 163 ev : Vx(U> c3 V,(V) + Vx(U>, 

Pv = EtJ @ I : V>x(U) c3 Vy(V) + V,(V) 

are smooth morphisms of &-graded coalgebras. 
3. The comultiplication A : 2)~ (U) + 2)~ (U) @J VX (U) of an open subcoalgebra 2)~ (U) 

is a smooth morhism of &-graded coalgebras. 

Remark 3.3.1. The underlying parts and the exterior components of smooth &-graded 
coalgebra morphisms of the proposition above are given by 

(@ @ @‘>O(u, u’) = (@O(u), @‘O(u’>), 

(@ @ @‘);((u, u’), 81 @ e;, . . . , e, @ $1 
= ~~(~,e,,...,e~) ~~a$+',e;,...,e~); 

md”G4 VI = u, 

UW;((U, he e 4 = 8, 

vd,^(~~~ 4, e1 B ql, . . . , ek e d = 0, k > 2; 

A’@> = (u, ~1, 
d;(u,e)=me, 
A;(u, 81, . . . , ok) = 0, k > 2. 

Theorem 3.3.2. (VX (U) @I Vy (V), PU , Pv) is the direct product in the model category of 
smooth &-graded coalgebras. 
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Proo$ By Proposition 3.3.1 Pu, PV are sc-morphisms. By Theorem 3.3.1 for any pair 
of smooth morphisms of &-graded coalgebras @u : Dz( W) + 27x(U), and 0~ : 
V,Z(W) + ‘Dy(V), the map Q, = @u @ @V o Aw is the unique &graded coalgebra 
morphism for which the diagram 

commutes. By Proposition 3.3.1 @ is a composition of smooth morphisms of &graded 
coalgebras. Hence @ is smooth by Theorem 3.2.2. 0 

Remark 3.3.2. The underlying part and the exterior components of the smooth morphism 
@=@u xQvoAwaregivenby 

@o(w) = (@;(w), Q;(w)), 

@[(W,@,... , ed = (~u);~~, 4,. . . , ed e PW,^NL h, . . . , w. 

3.4. Subcategories sco and SC’ 

In this section we shall show that the model category fm of Frkhet manifolds and the 
model category sm of BLK supermanifolds are both full subcategories of the model category 
SC of smooth coalgebras. This justifies introduction of SC as an extension of fm and sm. 

We define the category sco of even open coalgebras as the full subcategory of sc consisting 
of all objects of the form VX,B(IJ (U) and all sc-morphisms between them. Similarly, the cat- 
egory SC’ of finite-dimensional open coalgebras is defined as the full subcategory of SC con- 
sisting of all objects of the form VR~ @(w” (U) with arbitrary m, n 1 0, and all sc-morphisms 
between them. For notational convenience we shall introduce simplified symbols V(U) E 

~x,,c+~~~(U) and %,, (U) s Z&Z~R~ (U) for objects of SCCJ and SC’, respectively. Note 
that by definition, for all V(U), V(V) E OSCO and Vm,, (U), Vml,nt (V) E Osc’ one has 

Msco(V(U), V(V)) = Msc(V(U), V(V)), 

Msc’(VZ>,,,(U), V,r,, l(V)) = Msc(%,,(U), %,,,0)). 

By Theorem 3.3.2 both sco and SC< inherit the direct product from SC. 
As a consequence of Theorem 3.2.1 and 3.2.2 one has the following. 

Proposition 3.4.1. The correspondence 

OSCO 3 V(U) + U E Ofm, 

Msco(V(U), V(V)) 3 @ + a0 E Mfm(U, V) (23) 

is an equivalence of categories. 
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It follows that the model category fm of Frechet manifolds can be identified with the full 
subcategory scu of the category SC of open coalgebras. 

Remark 3.4.1. The inverse to the correspondence (23) is given by 

Ofm 3 U + D(U) c OSCO, 

Mfm(U, V) 3 $J - 4~* E Msco(WQ, WV>>, 

where & is a unique smooth morphism of coalgebras such that (&)O = 4, Using formula 
(1) of Proposition 2.1.3 for comultiplication in S(X) and formulae (14) of Proposition 3.2.1 
and (17) of Proposition 3.2.2 one gets for u E U, x1, . . . , Xk E X, 

(24) 
i=l I’ lPI,....P,l 

IPil>O 

where the sum runs over all nonempty i-partitions of the index set { 1, . . . , k). 
Let us now compare D(u) to the dual coalgebra (see Appendix AS) C”(U)’ of the 

algebra Coo(U) of smooth real-valued functions on an open subset U of a Frechet space X. 
For this purpose we introduce the pairing 

(., .)(I : D(U) x C”(U) + R 

defined, for all u E U, XI, . . . , Xk E X, and f E Coo(U) by 

(u.xl...Xk,f)u =d’f(u;x ,,..., xk). (25) 

Proposition 3.4.2. Let U be an open subset of a Frkhet space X, (D(U), AU, EU) the 
even open coalgebra, and CD0 (U) the algebra of smoothfunctions on U. 
1. For all f, g E C”(U), w E D(U), 

(w, f . du = C(q,3 f)UkqZ), Au, 

(w) 

b, 1)u = W(W), 

where AUW = Cc,, W(I) @o(2). 
2. Let 4 : U -+ V be a smooth map of open subsets of Frtkhet spaces. Then 

(4*3 f)v = (W> f 0 9)(1, 

for all 0 E V(U), f E C”(V). 

The first part follows from the multiple Leibnitz rule (Proposition 2.2.2) and the explicit 
formula for the comultiplication in S(X) (Proposition 2.1.3). The second part is a straight- 
forward consequence of the multiple chain rule (Proposition 2.2.1) and formula (24) for &. 
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Proposition 3.4.3. With the notation of Proposition 3.4.2 the map 

D(U) 3 a! --+ ((II, .) E C”(U)” (26) 

is an injective morphism of Z2-graded coalgebras. 

ProoJ: By Propositions 3.4.2 and2.5.3 forallw E D(U), (w, .)u E C”(U)‘. By Definition 
2.5.1 of dual coalgebra and Proposition 3.4.2 (26) is a morphism of &-graded coalgebras. 
Using the Hahn-Banach theorem for Frtchet spaces one can show that the pairing (25) is 
nonsingular which implies the injectivity of the map (26). 0 

Remark 3.4.2. The image of the map (26) is a subcoalgebra of C”(U)’ consisting of 
all finite linear combinations of evaluations of directional derivatives of arbitrary order. 
This subcoalgebra will be called the coalgebra of Dirac distributions on U. For infinite- 
dimensional Frtchet spaces this is a proper subcoalgebra of Coo(U)“. 

We shall proceed to the model category of BLK super-manifolds. Let F = (F’, F,) : 
6-y + s; Tn be an sm-morphism and { F~]~=, its exterior components. The collection 
(F’, F;, . . . , FL} can be regarded as a point in the space C”(Z&,, (U), Dmj,,f(V)). By 
Theorem 3.2.1 there exists a unique smooth &-graded coalgebra map with the underlying 
part F” and with the exterior components {F~}~=, . We denote this map by F*. 

Let G + (Go, G) : Sr’,“’ -+ S$“n” be another sm-morphism. Then by the above 
construction one has a smooth &-graded coalgebra map G, : D,,,I,~~ (V) + Dm~~,n~~ (W). 
Comparing formula (12) for the exterior components of composition of sm-morphisms 
(Remark 2.3.2) with the corresponding one (21) for the composition of smooth &graded 
coalgebra morphisms (Theorem 3.2.2) one gets (G o F), = G, o F*. 

Proposition 3.4.4. The correspondence 

Osm 3 Szgn * Z&,(U) E Osc<, 

Msm(SF’“, SF’,“) 3 F = (F’, F.) + F* E Msc’(Z&,,(U), Dz>,l,,j(V)) (27) 

is an equivalence of categories. 

Let Sn,n(U) be the &-graded algebra of superfunctions of a superdomain Sg’n, and 

(., .)rJ : z&,(U) x Sm9n(u) - II2 

a pairing defined by 

04 f)u = f0(a)7 

(u . al . . .ak,f)u = b'f(u;al,...,ak) (28) 

for all u E U, al, . . . , ak E [Wm @I [w”, and f E Sm,n(U). 
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As a consequence of the multiple Leibnitz rule (Proposition 2.3.3) and the multiple 
chain rule (Proposition 2.3.5) for superfunctions one has the following sm-counterpart of 
Proposition 34.2. 

Proposition 3.4.5. Let S”‘~” (U) be the &-graded algebra of superftunctions of a superdo- 
main S:,n, and (Vm,n(U), Au, EU) the open coalgebra Dm,,(U). 
1. Forall f, g E Sm,n(U)o USmsn(U)~, w E &,,(U), 

(W> f . du = C(-1) ‘f”w(*)‘b(l), f)Ub(2), g)ut 

(0) 

(w, 1)u = w(w>, 

where ACJW = CC,, W(I) 8 w(2). 

2. Let F = (F’, F.) : S:‘n + SF”n’ be an sm-morphism. Then 

IFz+w, f )v = (0, Fvf )u 

forall w E Vm,,,(U), f E S”‘,“‘(V). 

Proposition 3.46. With the notation of Proposition 3.4.5 the map 

Dm,,(U) 3 w + (w, .) E S”%“(U)” 

is an isomorphism of &-graded coalgebras. 

(29) 

Proof Since the pairing (28) is nonsingular the map (29) is injective. By Proposition 3.4.5 
it is a morphism of &-graded coalgebras. In particular it preserves the coradical filtration 

%,,(U), = u G,,(U):? 
k?O 

of the irreducible components Dm,, (U), , u E U. Hence, for all u E U, k 2 0 one has the 
injective maps 

Dm,,(C@) 3 a! + (a, .) E Sm.“(U);(k). (30) 

By Proposition AS.6 S”+n(U)$k) = (Sm,“(U)/Z,k+‘)’ and therefore 

dim(Dm,n(U)ik)) = dim(Smgn(U)$k)) < +co. 

It follows that the maps (30) are surjective for all k 2 0, and 11 E U, and so is the map (29). 
0 

Remark 3.4.3. By Proposition 3.4.6 the open coalgebra V)m,n (U) can be identified with 
the dual coalgebra of the algebra of superfunctions S”,” (U) . The coalgebra of Dirac dis- 
tributions on the superdomain S, M’n is defined as coalgebra of all finite linear combinations 
of evaluations of differentiations of superfunctions. This coalgebra coincides with the dual 
coalgebra S”*“(U)” [19]. 
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3.5. Supeijkctions 

Propositions 3.4.1 and 3.4.3 of Section 3.4 provide characterisation of even open coal- 
gebras as objects dual to algebras of smooth functions on open subsets of Frtchet spaces. 
Similarly by Propositions 3.4.4 and 3.4.6 finite-dimensional open coalgebras are dual coal- 
gebras to algebras of superfunctions on superdomains. Using this duality smooth functions 
in both cases can be regarded as linear functionals on corresponding coalgebras. This leads 
to the following definition of superfunction in general case. 

Definition 3.51. Let Dx(U) be an open coalgebra. A linear functional f E 27x(U) is 
called a superfunction on 27x (U) if the following conditions are staisfied: 
1. For each k 1 0 the function 

fk:Uxxx’*~xx3(u,~~,..., ak)--+(f,u*U,...ak)Ei8 
L i 

is jointly continuous with respect to the Cartesian product topology on U x X xk. 
2. Foreachk~Oandforallx~X~,u~U,anda~,...,a~~Xthepartialderivative 

Dx(f,u.Ul..~Uk) = lim 
(f, (u+EX).al .*‘uk) - (f,U .a] . ..uk) 

.G+O E 

exists. 
3. Foreachk>OandforallxEXe,uEU,andut,...,ukEX 

D,Lf,u+a~ .. .ak) = (f, u .a1 ...ak .x). 

Remark 3.51. Let D,,(U)’ be the full algebraic dual of an open coalgebra Dx (U). Let us 
consider the inclusion of &-graded spaces 

i : Dx(U) C3 Dx(U)’ + (Dx(U) @ Dx(U))’ 

defined for each f, g E Dx<U)b U Dx(U);, anda, B, E Dx(U)o U ~xUU)l by 

(i(f 8 g), a 8 B) = WP”“‘(f9 ~)(S, B). 

Vx (U)’ has the structure of &-graded commutative algebra with multiplication 

M : V,(U)’ ca a,(U)’ -A+ (Vx(U> c3 Dx(U>) s Dx(U)‘, 

and unit u : R -f+ ;I)x (U)‘. 
The explicit formula for the product f . g reads 

(f.g,U.Ut.*.Uk) = c ~(X,P)(-l)‘s”ap,‘(f, u .ap,)(g, u .aq), (31) 
P=1P1,4) 



Z. Jask6lski/Journal of Geometry and Physics 29 (1999) 87-150 123 

where u E U,al,..., ak E X, the sum runs over all tWO-pa&iOnS of the index set 
11,. . . , k], and the notation of Remark 2.1.2 is used. The unit 1 = u( 1) is given by 

(1, u) = 1, (1, u .a1 ..-ak) = 0 

fOralluEU,at ,..., QEX. 
Differentiating the formulae above with respect to the variable u and checking the con- 

ditions of Definition 3.5.1 one gets the following. 

Proposition 3.5.1. The subspace 2)~ (17)” c 2)~ (U)' consisting of all superfunctions on 
an open coalgebra DX (U) is a &-graded subalgebra of 2)~ (U)‘. 

Definition 3.52. Let f be a super-function on an open coalgebra Dx (U). The map 

f0 : u 3 u + (f, u) E R 

is called the underlying part of the superfunction f. For each k > 1 the kth exterior 
component fk!’ of the superfunction f is defined as a map 

f>:UxX1x-. x xl 3 (U, cl . . . 1 tk) - (f, u . 61 . . . tk) E R. i 
k 

It follows from Definition 3.5.1 that the underlying part and the exterior components of 
a superfunction f on an open coalgebra Vx (U) are smooth functions on U and U x X; k, 
respectively.ForalluEU;xl,...,xkEXo;~1,...,~1EX1onehas 

where Dx denotes the partial derivative with respect to u-variable in the direction x E Xc. 
This implies that the superfunction is uniquely determined by f O, and (fc}k?l. 

Let 2)x (U) be an open coalgebra and 

R : D,x(U) x S(X) 3 (CO, u . a) + u. a!. w E Dx(U) 

the right action of the Hopf algebra S(X) on Z&(U) introduced in Section 3.1. For each 
w E S(X) one has a linear map RL : 23x(U)’ --f Dx (U)’ given by 

(R;f,u.a) = (f,R,(u.a)) = (f,u.a.o) 

for all u E U, a! E S(X). One can easily check that if f E Dx(U)’ is a superfunction so is 

R:f. 

Definition 3.5.3. Let f be a superfunction on an open coalgebra DX (U). For each w E 
S(X) the superfunction D, f = Rk f is called the derivative of f in the direction o. 

The following proposition says that the notions of superfunction on open co- 
algebra (Definition 3.5.1) and its derivative (Definition.3.5.3) are generalisations of the 
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corresponding notions both in the smooth FrCchet geometry and in the finite-dimensional 
BLK supergeometry. 

Proposition 3.5.2. 
1. Let X = X0 $ {0} be a purely even &-graded Frechet space. Let U be an open subset 

of X0 and let 

(., .)u : D(U) x C”(U) + R 

be the pairing of Proposition 3.4.2. Then the map 

C”(U) 3 f + f = (., f)U E Dx(U>^ 

is an isomorphism of &-graded algebras. Moreovel; for all u E U, xl, . . . , xk E X one 
has 

D .,....,f(u) = Dkf (u, X1 3 . . . , xk). 

2. Let X = R” @ W’ be a$nite-dimensional &-graded Fr&het space. Let U be an open 
subset of IF!” and 

(., .)u : I&,(U) x LP”(U) -_, Ft. 

the pairing of Proposition 3.4.5. Then the map 

CY9”(U) 3 f + f= (., f)u E Dx(U)/’ 

is an isomorphism of &-graded algebras. Moreovel; for all u E U, al, . . . , ak E R” G3 
W’ one has 

D, ,... .,f(u, 15)) = Dk f (u, 8; al, . . . , Uk). 

Remark 3.5.2. Let @ : Dx(U) + &(V) be a smooth morphism of open coalgebras. 
Then the dual map @’ : Vr (V)’ + Vx(U)’ is a morphism of &-graded algebras. Let f 
be a superfunction on 2)~ (V). For all u E U, al, . . . , Uk E X one has 

(@‘f, u .a~ .. .Uk) = (f, @(u ‘al .“ak)) 

=k; c a(X,?)(f, @O(u). CD+ @,a~,)...@+ (u,~P,)). 
IPII IPi1 (32) 

i=l lPI,....Pjl 
IPjl>O 

where the sum runs over all nonempty partitions of the index set { 1, . . . , k}. Following the 
proof of Theorem 3.2.2 one can show that the functional O’f is a superfunction on 27~ (U). 
It follows that @’ defines a morphism of &-graded algebras 

CD+ : Vy(V)^ 3 f + @‘f E V,(U)^ 

The superfunction @+ f = @f is called the pull-back of the superfunction f . 
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Differentiating formulae (31) and (32) according to Definition 3.5.3 one gets the multiple 
Leibnitz and the chain rules for superfunctions. 

Proposition 3.5.3. Let 2)~ (U)“, 2)~ ( V)A be algebras of super-functions on open coalge- 
bras VX (U), and 2)~ (V), respectively. Let @ : DX (U) ----+ VY (V) be a smooth morphisms 
of open coalgebras. 
1. Foreachf,gEVX(U)“andal,...,akEX 

Dq...q(f . g> = c a(X, P)(-l)‘f”‘Pl’D,,l f + Dap2g, (33) 
P=IP, >9) 

where the sum runs over all two-partitions of the index set { 1, . . . k) and the convention 
DaMf = Dlf = f isused. 

‘2. ForeachgEVy(V)“andal,...,akEX 

(Da,....,@*g)‘(u) 

=eii c o(X,P)(g, @O(u) .@+(u,aP,)...@+(~,aP~)), (34) 

where the sum runs over all nonempty partitions of the index set (1, . . , , k). 

Let 27~ (U) be an open coalgebra. For each pair of open subsets U” c U' c U we define 
the restriction map 

Queues : Vx(U’)^ + VX(U”)” 

as dual to the inclusion Vx (U”) c VX (U’). The assignment for each open subset U’ c U 
the &graded algebra Vx(U’)” of superfunctions with the restriction maps above defines 
a sheaf Vc = (U, V>x(.)^> of &-graded algebras. 

Let @ : VX (U) + Vy (V) be a smooth morphism of open coalgebras. For each open 
V’ c V the restriction 

@VI : v&D”-‘(v’>> 3 p * CD(p) E Vy(V’> 

is a smooth morphism of open coalgebras. Then the family of dual maps 

q, : Vy(V’)^ + vx(d-’ (V’))^ 

defines the morphism of sheaves of &-graded algebras @* = (0’, @*) : VG ---+ ID;. 
One has the following. 

Proposition 3.5.4. The correspondence 

Vx(U) - V; = (U, Vx(.Y), 

@ + @J* = (@O, @*), 

is a covariantfinctorfrom the model category SC of open coalgebras to the category of 
sheavs of Z2-graded algebras. 
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Thefinctor above restricted to the subcategory SC< ofjinite-dimensional open coalgebras 
yields an inverse to the finctor of Proposition 3.4.4. 

4. Smooth coalgehras 

4.1. Category of smooth coalgebras 

Definition 4.1.1. Let M be a pointed Zz-graded cocommutative coalgebra and X = Xc $ 
XI a &-graded Frechet space. An X-atlas on M is a collection {(U,, Qcy)jaCl of charts 
(U, , @,) satisfying the following conditions: 
1. The collection { Uol}(yel is a covering of the set M of group-like elements of M 

2. For each a! E I, let M(U,) be a subcoalgebra of M given by 

M(U,) = @ M,, 
P& 

where M, denotes the irreducible components of M containing p E U,. Each @, is 
an isomorphisms of &-graded coalgebras 

@ol : MU-J,) - ~x(@~NL)), 

where Dx(@‘(U,)) is an open subcoalgebra of VX. 
3. Foranya,BEZsuchthatU,nUg#O,~,O(U,nUg)isanopensubsetofXo,and 

@,O@ p’ : DxW@L f-l ufi>> - ~~@mdqd) 

is a diffeomorphism of open subcoalgebras of 2)~. 

Let {(U,, @(Y)}(YE~ be an X-atlas of M. For each CI E I the underlying part of Qor 

0: : u, + x0 

is a bijective map onto an open subset of X0, and the compositions 

are homeomorphisms. As in the standard theory of manifolds [20] one easily shows that there 
exists a unique topology 7~ on M such that all U, are open and all 45: are homeomorphisms 
onto open subset of Xc. 

Definition 4.1.2. Two X-atlases {(U,, cD~)}~~I, {(Up, @~)}B~J on M are compatible if 
the union of them {(U,, @v)}vEru~ is an X-atlas on M. 
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One easily verifies that compatible X-atlases on M determine the same topology 7~ on 
M. Since the smoothness of a graded coalgebra morphism in SC is a local property one also 
has the following: 

Proposition 4.1.1. The relation of compatibility of X-atlases is an equivalence relation. 

Definition 4.1.3. Let M be a pointed &-graded cocommutative coalgebra and X a Z2- 
graded Frechet space. An equivalence class of compatible X-atlases on M is called on X- 
smooth structure on M. A coalgebra M with an X-smooth structure inducing a Hausdorff 
topology 7~ on M is called a smooth coalgebra modelled on the Z2-graded Frechet space 
X, or simply an X-smooth coalgebra. 

Note that by Proposition 4.1 .l an X-atlas on M uniquely defines a smooth structure 
onM. 

Definition 4.1.4. Let M be an X-smooth coalgebra. An X-atlas on M is said to be admis- 
sible if it defines an original X-smooth structure on M. A chart (U, , CD,) on M is called 
admissible if it belongs to an admissible atlas on M, 

Remark 4.1.1. Let { (&, 0a)}a61 be an admissible X-atlas on a smooth coalgebra M. 
By Proposition 3.2.2 and Theorem 3.2.2, {(U,, @t)},E~ is a smooth Xc-atlas on M. By 
the same token compatible atlases on M induce compatible smooth atlases on M. The 
space M of group-like elements of M with the smooth structure determined by the atlas 

{(U,, @,o)hrEI is called the underlying manifold of M. 

Definition 4.1.5. Let M, N be smooth coalgebras. A morphism @ : M + N of Z2- 
graded coalgebras is said to be smooth if for each p E A4 there exist admissible charts 
(U,, @,) on M and (V,, qY) on N such that p E U,, O’(U,) c V,, and the map 

Py 0 @ 0 @,’ : Dx(U,) * D,x(V,) 

is a smooth morphism of open subcoalgebras. 

As a simple consequence of Theorem 3.2.2 one gets: 

Proposition 4.1.2. The composition of smooth morphisms of smooth coalgebras is smooth. 

Definition 4.1.6. The objects of the category SC of smooth coalgebras are X-smooth coal- 
gebras, where X runs over the category of graded Frechet spaces. 

For any two objects M, N E OSC the space of morphisms MSC(M, N) consists of all 
smooth morphisms of graded coalgebras. 

The composition of morphisms in SC is defined as a composition of graded coalgebra 
morphisms. 

An isomorphism in the category SC is called a diffeomorphism of smooth coalgebras. 
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Remark 4.1.2. In order to simplify further considerations we assume that objects and 
morphisms of the category SC are defined up to diffeomorphisms of smooth coalgebras 
with underlying parts being identitical maps in FM. 

Remark 4.1.3. Let M, N be smooth coalgebras, and @ : M -+ N a morphism of z2- 
graded coalgebras. The restriction of 0 to the set M of group-like elements of M, 0’ : 
A4 + N, is called the underlying part of the morphism 0: For composition of two &- 
graded coalgebra morphisms one has (U o @)’ = p” o @‘. By Remark 4.1.1 if (U,, @,), 
(V, , qV) are admissible charts on M and N, then (U,, @,“), (V, , Wj) are admissible charts 
on M and N, and the map 

cyyoo@“o@, O-l : a&U,) ---+ ylyn(y/) 

is smooth by Proposition 3.2.2. It follows that the underlying map of a smooth morphism 
of graded coalgebras is a smooth map of Frechet manifolds. 

Definition 4.1.7. Let X = Xc @ X1 be a &-graded Frtchet space, and {U,, (~a}~~[ and 
admissible atlas on a smooth manifold M modelled on the Frechet space X0. Let (J/~B}~~Z 
be a collection of maps such that 
1. for all a! E I, /? E Z(o) E (fi E I : 17, fl lJ, # 0) 

P a~ : ~DX~(U~ n up)) - ~x(vjJ(& f-7 up>> 
is an isomorphism of smooth open coalgebras such that p$ = V&4 o(p,-‘; 

2. for all o E I, qaI,, = idRV,(u,)Bs(x); 
3. for all o, #I, y E Z such that U, fl Up f’ U, # 0, 

A collection (pab](yEZ with the properties above is called an X-cocycle of transition sc- 
morphisms over the atlas {U,, cpcuJaEl on M. 

One has the following “reconstruction theorem” which is very useful in constructing new 
smooth coalgebras, 

Proposition 4.1.3. Let (*ap}cyE~ be an X-cocycle of transition sc-morphisms on M. Then 
there exists a unique smooth coalgebra M with the underlying manifold M and with the 
admissible X-atlas {(U,, Pa)}(uE~ such that 

foralla E I, B E Z(a). 

(35) 

The smooth coalgebra M and the X-atlas {(U,, Pa)JaE~ of the proposition above are 
said to be generated by the X-cocycle {IYOID}~~Z. 
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Prooj Let V&~Lr be an X-cocycle related to a smooth atlas {U, , (00l}~~ 1 on M. For 
p E M, consider the space of pairs (a, WZ)~, where CI E I is such that p E U, and 

m E Dx~~P,~) = W{cp,(p)} @I S(X). Two such pairs are equivalent 

(a, m)p - (a’, m’)p 

if m’ = eaaf (m). Using the cocycle properties (Definition 4.1.7) one easily shows this is an 
equivalence relation. Let M, denote the space of equivalence classes of this relation and 
let [((Y, m),], denote the equivalence class of (a, m)p. Since @aa, are &-graded coalge- 
bra morphisms M, acquires the structure of irreducible pointed &-graded cocomutative 
coalgebra: 

d[(w m)&_) = +a((i,)(m). 

Let M be the direct sum of irreducible Zz-graded coalgebras 

M=$M,,. 
PCM 

For each CI E I we define 

Using the cocycle properties (Definition 4.1.7) one verifies that the collection ((CT,, @a)}aE~ 
is an X-atlas on M with the required transition sc-morphisms. By Proposition 4.1.1 it defines 
a unique X-smooth structure on M. 

Suppose that there exists another smooth coalgebra M’ over M with an admissible X- 
atlas {(UA, !&A)},,, satisfying condition (35). Then the map defined for each p E M by 

M~~m--+tP~‘oP~b:MMp 

extends by linearity to the diffeomorphism of smooth coalgebras over the identity map. 
Hence M’ = M by Remark 4.1.2. 0 

as sets of maps. Using the construction of Proposition 4.1.3 for all three cocycles of the 
definition above and comparing the resulting smooth coalgebras one gets the following 
result. 

Proposition 41.4. Compatible X-cocycles of transition sc-morphisms on M generate the 
same X-smooth coalgebra M and compatible X-atlases on M. 
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Definition 4.1.8. Let M be an X-smooth coalgebra. A linear functional f on M is called a 
super-function if for each p E M there exists an admissible chart (U,, @,) such that p E U, , 

and the functional (@; t )‘f is a superfunction on the open coalgebra VX (0,” (U,)). 

Proposition 4.1.5. Let M’ be the full algebraic dual of M endowed with the Z2-graded 
algebra structure dual to the &-graded coalgebra structure on M. 

The subspace MA c M’ consisting of all superfunctions on an X-smooth coalgebra M 
is a &-graded subalgebra of M’ 

Let {(&, RdJad be an admissible X-atlas on a smooth coalgebra M and let U be an 
open (with respect to the induced topology 7~) subset of M. Then the collection 

{(u f-l urn, @(YIM(U)~~M(U~))~EI (36) 

is an X-atlas on the subcoalgebra 

M(U) = @MP. 
PEU 

Compatible X-atlases on M induce compatible X-atlases on M(U). The subcoalgebra 
M(U) c M with the smooth structure defined by the induced atlas (36) is called an open 
subcoalgebra of M. 

Assigning to each open subset U c M the &-graded algebra M(U)* of superfunc- 
tions on M(U) and introducing the restriction maps as duals to the inclusions M(U’) c 
M(U), (U’ c U) one gets a sheaf of &-graded algebras M& = (M, M(.)^). M$ is 
called the sheaf of superfunctions on M. 

Let @ : M + N be a morphism of smooth coalgebras. By Remark 3.5.2 for each 
superfunction g E NA2, the functional @‘g is a superfunction on M. O*g = @‘g is called 
the pull-back of g. For each open subset V c N we define 0: : N(V)” + M(U)” as a 
map dual to 

@v : M(@‘-‘(V) 3 p + Q(p) E N(V). 

The collection of maps {@*} defines a morphism of sheaves of &.-graded algebras @J* = 
(@‘, @* .) : M$ + NG . One has the following global version of Proposition 35.4. 

Proposition 4.1.6. The correspondence 

M - M; = (M, M(.)“), 

0 + <p+ = (a+ @*) ’ 

is a covariantfunctorfrom the category SC of smooth coalgebras to the category of sheaves 
of &-graded algebras. 
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4.2. Direct product 

Let M, N be smooth coalgebras modelled on graded Frechet spaces X, and Y, re- 
spectively. One can introduce an (X $ Y)-smooth structure on M @ N as follows. Let 
{(U,, Ocu))wE~ be an admissible X-atlas on M, and {(VP, WB)}~~J an admissible Y-atlas 
on N. Consider the collection 

One obviously has 

MxN= U UC2 x v,, 
(%B)ErxJ 

and the &-graded coalgebra isomorphisms 

By Definition 3.3.2 the RHS of the equations above can be regarded as tensor products in 
the model category while the LHS as open subcoalgebras of Vxer. Then the &-graded 
coalgebra morphisms 

(@, @ P/?) 0 (@aI @ Q-’ = (@a 0 @,,I) @ (@B 0 @i’) 

are smooth by Proposition 3.3.1. It follows that collection (37) defines an (X @ Y)-atlas on 
M 8 N. One can easily verify that compatible atlases on M and N lead by the construction 
above to compatible atlases on M ~3 N, hence the following definition: 

Definition 4.2.1. The tensor product of two smooth coalgebras M, N E OSC modelled 
on the &-graded Frtchet spaces X, Y, respectively, is the tensor product of Z2-graded 
cocommutative coalgebras M @N endowed with the (X @ Y)-smooth structure determined 
by the atlas (37). 

As a consequence of Proposition 3.3.1 one gets: 

Proposition 4.2.1. 
1. Let Q, : M += N, 0’ : Ml + N’ be morphisms of smooth coalgebras. Then the tensor 

product of graded coalgebra morphisms 

is a morphism of smooth coalgebras. 
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2. Let M @ N be the tensor product of smooth coalgebras. Let EM, EN be counits in the 
coalgebras M, N, respectively. Then the maps 

are morphisms of smooth coalgebras. 
3. The comultiplication A : M + M @ M in a smooth coalgebra M is a morphism of 

smooth coalgebras. 

Remark 4.2.1. Let us observe that the X @ Y-atlas (37) induces the smooth atlas 

on M x N. It follows that the underlying manifold of M @ N is the Cartesian product 
M x N of Frkhet manifolds. The underlying parts of smooth coalgebra morphisms from 
Proposition 4.2.1 are given by 

(0 @ a’)’ : M x M’ 3 (u, a’) + (@O(u), @“(u’)) E N x N’, 

P;:MxN3(u,v)+u~M, 

Pi: M x N 3 (u, v) - v E N, 

A0:M3u-+(u,u)~MxM. 

By Theorem 3.3.1 and Proposition 4.2.1 one gets 

Theorem 4.2.1. (M 8 N, PM, PN) is the directproduct in the category of smooth coalge- 
bras, i.e. for every smooth coalgebra f and smooth coalgebra morphisms @M : & + M, 

@N : E + N there exists a uniqe morphism of smooth coalgebras @ : & + M @ N 
making the diagram 

M@N 

commute. 

Remark 4.2.2. The unique morphism @ in the theorem above is given by the composition 

@=(@Mc~@N)o~E, 

and its underlying part by 

CD’ : E E u - (@L(u), Q;(u)) E M x N. 
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4.3. Subcategory of smooth Frkchet manifolds 

Let us denote by OFM and MFM the collections of objects and morphisms of the category 
FM of smooth Frechet manifolds. In this Section we shall show that the category FM 
is equivalent to the category SCo of even smooth coalgebras. SC0 is defined as the full 
subcategory of SC consisting of all smooth coalgebras modelled on purely even graded 
FrCchet spaces X = X @ {o}. By definition for all M, N E SC0 

MSCo(M, N) = MSC(M, N). 
Note that by Theorem 4.2.1 SC0 inherits the direct product from SC. 

Gathering together Remarks 4.1.1,4.1.3,4.2.1, and 4.2.2 one gets: 

Proposition 4.3.1. The correspondence 

OSC 3 M + M E OFM, 

MSC(M, N) E CD * Q” E MFM(M, N) 

is a covariant functor respecting the direct product. 

Let {(U, , tpa)}aE~ be an admissible atlas on a Frechet manifold M modelled on a Frechet 
space X. By Remark 3.4.1 the family {@(y~}(yEr of sc-morphisms defined by 

Wab = (9 O CD,‘)*,~~~~o,ncip~~~~~~~ B E Z(a) (38) 

is an (X@[o))-cocycle of transition sc-morphisms over the atlas {(U,, ~J~)},~I on M. By the 
same token cocycles constructed from compatible smooth atlases on A4 by formula (38), are 
compatible. Thus, by Propositions 4.1.3 and 4.1.4, the following definition is not ambiguous. 

Definition 4.3.1. The (X @ (o))-smooth coalgebra D(M) generated by the cocycle (38) is 
called the smooth coalgebra of the FrCchet manifold M, 

For each admissible atlas {(Ua,Va))aEZ on M, the (X $ (O))-atlas on D(M) generated 
by the cocycle (38) will be denoted by {(U,, qa*)JaEZ. Applying this construction to the 
maximal atlas on M we define for each admissible chart (U, PO> on M the corresponding 
admissible chart (U, pp,) on D(M). One easily verifies that the definition of (U, co*) is 
independent of the choice of admissible atlas containing (U, ~0). 

Proposition 4.3.2. Let M E OSCo. Then M is the smooth coalgebra of its underlying 
manifold M, i.e. M = V(M). 

ProoJ: Let t(U,, @a)Ld be an admissible (X @ {o))-atlas on M. Then by Remark 4.1.1 

theatlas I(&, @z))IYEZ is an admissible smooth atlas on the underlying manifold M. For all 
(Y, ~9 E Z(a), Qcr o @P’ are morphisms of the model category sco and by Remark 3.4.1 oar o 

@i’ = (0,” o @,I)*. Then by the construction of D(M) the map defined for each p E M by 

M, 3 p - (@,o*)-’ 0 o,(p) E D(M), 
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extends by linearity to a diffeomorphism of smooth coalgebras over the identity map. Here 
M = D(M) by Remark 4.1.2. 0 

Let C$ : M + N be a smooth map of Frechet manifolds. Then for each p E M there are 
admissible charts (U, , cpa) at p E M and (VP, +p) at e(p) E N such that the composition 

lc’B OWfG’ : VavJoo - VQWg) 

is a smooth map between open subset of Frechet spaces (morphism in fm). 
For all I_L E 2)(M)p we define 

#*p(p) = $$ 0 (Ilrs 0 d 0 boil)* 0 %*(cL). (39) 

By Remark 3.4.1 the definition above is independent of the choice of admissible charts 
at p E M and 4(p) E N. Extending formula (39) by linearity in p one gets the smooth 
morphism of graded coalgebras 

4% : V(M) - WN), 

with underlying part (&>O = 4. 

Proposition 4.3.3. Let M, JU E OSCo. For all smooth morphisms of graded coalgebras 
@ : M + A’, @ = (@O)*. 

Pro06 By Definition 4.1.5 for each p E M there exist admissible charts (U,, @,) on M, 
and(VY, W,,)onN,suchthatp E U,,@‘(U,) E VyandthecompositionIYyo@o(@,)-’ 
is an scu-morphism. Then by Remark 3.4.1 

WY 0 0 0 (C&J-’ = @ 0 CJ” 0 (@,0)-l>*. 

By Proposition 4.3.2 one can assume @(y = @z+ and WY = Q$. Hence for all p E M, p E 

NW, 

@P(p) = @*)-’ 0 w; 0 @O 0 @y>* 0 @i,o*(d, 

and @ = (O’)*. 0 

Propositions 4.3.1-4.3.3 imply the following global counterpart of Proposition 3.4.1 and 
Remark 3.4.1. 

Theorem 4.3.1. The correspondence 

OFM 3 M-D(M) E OSCo, 

OFWM, N) 3 4 - $* E MSCo(D(M), D(N)), 

is an equivalence of categories FM and SCo. Moreover it is the right inverse to thefinctor 
of Proposition 4.3.1. 
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The result above means that the category of smooth Frechet manifolds can be regarded as 
a full subcategory of the category of smooth coalgebras. This partly justifies our construction 
of SC as a &-graded extension of FM. 

Remark 4.3.1. Composing the functors from Proposition 4.3.1 and Theorem 4.3.1 one gets 
the covariant functor respecting the direct product 

OSC3M+M-,&D(M)EOSC~, 

MSC(M, N) 3 @ - Q” ----+ 5 = (@O)* E MSCo(fi, 3). 

The functor above is called the underlyingfunctor. 

Let us note that fi is canonically embedded in M. Let io : S(X0) + S(Xo 63 XI) be 
the canonical embedding defined as the universal extension of the composition 

XI-J 3 X()@X] J+ S(Xo@Xr). 

For each p E M we define 

M, 3 p - 0,’ 0 (rdQi(U,r) @iio)o@~,(~) ??Mp, 

where (U,, ~0,) is an admissible chart of M at p E M. One easily verifies that the definition 
above is independent of the choice of an admissible chart at p and extends by linearity to 
the morphism of smooth coalgebras i : M + M,withi”=idM.ByRemark4.1.2G 
can be regarded as a subcoalgebra of M. 5 is called the underlying subcoalgebra of M. 

Remark 4.3.2. We shall briefly discuss the geometric interpretation of the smooth coal- 
gebra of a Frechet manifold M. By definition, D(M) is the direct sum of its irreducible 
components 

D(M) = @ D(M),. 
EM 

With respect to the graded coalgebra structure each irreducible component D( M)P is iso- 
morphic with S(X @ (0)). For each p E M let 

D(M)p = u D(M);) 
k?O 

be the coardical filtration of D(M),,. 

The smooth structure on D(M) is related to the smooth structures of the kth order co-jet 
vector bundles over M in the following way. For k 2 0 we define the subset 

2+(M) = u D(M$)x c D(M), 
FM 

and the projection 

rick) : Tck)(M)r) > D(M)r) 3 /_L + p E M. 
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Let {(U,, (P~)}~~I be an admissible atlas on M and {(U,, P~*Y*)}~~I the corresponding (X @ 
{o})-atlas on D(M). For each k 2 0, the collection {(U,, T$‘)},~I, where 

r(Q : (#y(U,) 3 p_ - (Da*(P) E ua x S’%a, 

is a triialising covering of jr@) 

(40) 

: T(~)(M) + M (we are using the terminology of 1201). 
One easily verifies that compatible atlases on D(M) yield compatible trivialising coverings 
and that n@) : t@)(M) --+ M acquires the structure of a smooth vector bundle over M with 
standard fibre ,@) (X). 

In the case of a finite-dimensional Frechet space X x W the bundle rrck) : tck)( M) -+ M 
constructed above is called the kth order co-jet bundle over M and is dual to the bundle of 
kth order jets on M. 

In the case of an infinite-dimensional FrCchet space X, for k 2 2 the standard fibre 
S@)(X) is not complete with respect to the direct sum and the projective tensor product 
topologies on 

S@‘(X) = 6 Y(X), 
i=O 

and S’(X), respectively. Since the transition maps of the trivialising covering (40) are 
continuous with respect to this topology, the bundle rrck) : T(~)(M) + M admits a unique 
extension to a bundle with a complete standard fibre. Let us stress that in the present 
coalgebraic approach this completion will not be used. 

Remark 4.3.3. The construction discussed in the previous remark applies also to the subset 
of all primitive elements of the coalgebras D(M). Let tp(M) be the space of all primi- 
tive, with respect to p E M, elements of D(M). For each p E M one has the invariant 
decomposition 

D(M)") = R @ 7,(M). P 

Let us introduce the set 

with the projection n : I(M) + M given by n(lp(M)) = p. In this case the smooth 
structure on D(M) induces the canonical smooth structure of the tangent bundle of M. 

Let M be a smooth FrCchet manifold, (D(M), AM, EM) the smooth coalgebra of M, and 
(C”(M), M, u) the algebra of smooth functions on M. For each p E M let us consider the 
pairing 

(.,.)p :23(M), x Cm(M) + KY, 

given by 

(41) 
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where (U, , (pa) is an admissible chart on M at p. One easily verifies that the definition 
above is independent of the choice of an admissible chart at p. Extending formula (41) by 
linearity in the first variable one gets the pairing 

(., .)M : D(M) x P(M) - Ft. (42) 

Using Remark 3.4.1 and Proposition 3.4.2 one gets the following. 

Proposition 43.4. Let V(M) be the smooth coalgebra of a Frkhet manifold M and 
P(M) the algebra of smoothfunctions on M. 
1. Forall f, g E C”(M), p E D(M) 

(PL, f . &?)A4 = ~bw7 f)M(/-q2), &T)M, 

(FL) 

(FCL, 1)M = &Mb), 

where &tw = & ~(1) x 1-q2). 

2. Let &J : M + N be a smooth map of Frtkhet manifolds. Then 

(9*& f )N = (I% f 0 6)M* 

for all p E D(M), f E (Y(N). 

As in the case open even coalgebras one can show that the pairing (42) is nonsingular. 
Then the proposition above implies the following. 

Theorem 4.3.2. The map 

D(M) 3 P - (@L, .) E Cm(M)” 

is an injective morphism of &-graded coalgebras. 

4.4. Subcategory of super-manifolds 

We define the category SC< as a subcategory of SC consisting of all smooth coalgebras 
modelled on finite-dimensional &-graded Frechet spaces and all SC-morphisms between 
them. By definition SC’ is a full subcategory of SC, i.e. for all M, N E OSC’ 

MSC’(M, N) = MSC(M, N). 

By Theorem 4.2.1 SC’ inherits the direct product from SC. In this section we shall construct 
an equivalence of the category of BLK supermanifolds SM introduced in Section 2.4 with 
the category of finite-dimensional smooth coalgebras SC’. 

Let dM be a supermanifold. For each (m, n)-atlas {(U,, F,)),,r on AM the family of 
maps {F,B]~~I given for all a! E I, ~9, E Z(o) by 

(43) 
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is an (m, n)-cocycle of sm-transition maps over the smooth atlas {(U,, Fi)}ae~ on the 
underlying manifold M. Applying the functor of Proposition 3.4.4 to the cocycle (43) one 
gets (iw” $ [W”)-cocycle of SC-transition maps 

F,b* = (Fb 0 F,-‘), : ndF,Ow, n up)) - ~m,n(Fgow~ n qa, (4) 

over the same smooth atlas on M. By Proposition 4.1.3 the cocycle (44) generates a unique 
smooth coalgebra D(dM) and the admissible ([Wm @ [Wn)-atlas ((U,, Fa*)}aE~ on D(dM). 
One easily verifies that different (m, n)-atlases on dM lead by the above construction 
to compatible (IV @ [W”)-atlases on the same smooth coalgebra D(dtM). Applying the 
construction to the maximal (m, n)-atlas on dM, we define for each chart (U, F) on dM 
the corresponding admissible chart (U, F*) on D(dM). 

Definition 4.4.1. The smooth coalgebra D(dM) generated by the cocycle (44) is called the 
smooth coalgebra of the supermanifold d,zl. 

Reversing the construction above and using the reconstruction theorem for supermani- 
folds (Proposition 2.4.3) one can show that the correspondence 

OSM3 dM - D(dM)EOSC< 

is bijective. Moreover for each admissible chart (U, @) on D(dM) there exists a chart 
(U, F) on dM such that 0 = F*. 

Let F = (F’, F.) : dM + I?N be a morphism of supermanifolds. Then for each p E M 
there are charts (U,, F,) on dM and (Vv, G,) on B,v such that p E U,, F’(U,) c V,,, 
and the composition 

G,oFoF,-’ : &,, (F:(W) - &,, (G”Y (V,)) 

is a morphism in the model category sm. 
Let D(dM), be the irreducible component of L??(dM) containing the group-like element 

p E M. For all I_L E D(dM), we define 

F,,,(p) = G,,’ 0 (GY 0 F 0 F,-‘), 0 F,,(p). (45) 

By Proposition 3.4.4 the definition above is independent of the choice of admissible charts 
at p E M and @O(p) E N. Extending formula (45) by linearity in p one gets the smooth 
morphism of graded coalgebras 

F* : D(dM) --+ ZWN), 

with the underlying part (Fe)’ = F”. As a consequence of Proposition 3.4.4 one gets: 

Theorem 4.4.1. The correspondence 

OSM 3 AM + D(dM) E OX’, 

OSM(dM, a,) 3 F + Fz+ E MSC’(D(dM), a@~)) 

is an equivalence of categories SM and SC’. 

(46) 
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It follows that the category of BLK supermanifolds can be identified with the full sub- 
category of the category of finite-dimensional smooth coalgebras. Since by Theorem 4.3.1 
the category of Frdchet manifolds can be identified with subcategory of even smooth co- 
algebras, SC provides a correct extension of both categories. 

Remark 4.4.1. As in the case of category FM of FrCchet manifolds (Remarks 4.3.2 and 
4.3.3) the smooth coalgebra of a supermanifold admits the geometrical interpretation in 
terms of co-jet vector superbundles [5]. Since the constructions of these bundles requires 
some techniques of algebraic geometry [ 171 not used in the present paper, we refer to the 
original paper [5] for the discussion of this point. 

Let (D(dM), AM, 8~) be the smooth coalgebra of a supermanifold AM, and (d(M), 
M, a) the algebra of super-functions on AM. For each p E M the pairing 

(., .)p : X4w>, x d(M) - ~8 

is defined by 

(i& f)p = (F,*(p), (F;l)Li,(fi(i,))F,o(II,)? (47) 

where (U,, Fa) is a chart on AM at p. By Proposition 3.4.4 the definition above is in- 
dependent of the choice of a chart at p. Extending formula (47) by linearity one gets the 
pairing 

(., .)M : D(dM) x d(M) - R. (48) 

As a consequence of Propositions 3.4.4 and 3.4.5 one has the following: 

Proposition 4.4.1. Let D(dM) be the smooth coalgebra of a super-manifold AM. 
1. Forall f, g E d(M)0 U d(M)I,p E D(dM) 

(PJh4=C(-l) 'f'+%q1)> f)M(P(2), g)Mv 

(WL) 

(A 1)M = Ekf(PL), 

where AMW = CcIL) ~(1) 8 ~(2). 

2. Let F = (F’, F,) : AM -+ t3~ be a morphism of super-manifolds. Then 

(F*pcL, f )N = (P, F/vf ),vt 

for all P E D(dM), f E B(N). 

Using Proposition A.5.6 and the above proposition one obtains the following global 
version of Proposition 3.4.6 [5,19]. 

Theorem 4.4.2. The map 

D(dM) 3 w - (w, .)M E d(M)" 
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is an isomorphism of Hz-graded coalgebras. 

Each superfunction f on a supermanifold A,+,- can be identified via the pairing (48) with 
a superfunction (e , f)~ on D(dq,). Assuming this identification one has: 

Proposition 4.42. The functor of Proposition 4.1.6 restricted to the subcategory SC’ of 
finite-dimensional smooth coalgebras 

OSC’ 3 M ---+ M; = (M, M(.)^) E OSM, 

MSC’ 3 @ + @* = (@‘, 0;) E MSM 

is an equivalence of categories and the inverse to thefunctor of Theorem 4.4.1. 
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Appendix A 

A. I. Graded spaces 

A &-graded space is a vector space V with distinguished subspaces VO, VI such that V 
is the direct sum VO @ VI of VO and VI. VO, VI are called the even and the odd part of V, 
respectively. Similarly, an element u E V is called even if u E Vo and odd if u E VI. Any 
element IJ E V has a unique representation as a sum u = 2ru + ut of its even ~0 E VO and 
odd II) E VI components. An element u E VO U VI is called homogeneous. If IJ E Vi, v # 0 
the parity 1 u 1 of a homogeneous element v is defined by ) 2) 1 = i E Z2. 

Let V, W be Hz-graded spaces. The space Hom(V, W) of all linear maps from V to W 
gets the natural grading 

Hom(V, W) = Hom(V, W)o @ Hom(V, W)l, 
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where f E Hom(V, W)i if f (Vj) c Wi+j. A morphism of &-graded spaces is an even 
linear map (i.e. an element of Hom( V, W)o). 

A graded subspace W c V of a &-graded space V is a vector subspace of V with the 
i&grading given by W = (W n VO) 6B (W f~ VI). 

The direct sum V @ W of &-graded spaces V, W is the direct sum V @ W of vector 
spaces V, W with the Z2-grading 

(V El3 w>o = vo a3 wo, we+w)1=vlcBw1. 

The tensorproduct V @ W of &-graded spaces V, W is the tensor product V @ W of vector 
spaces with the Z2-grading 

(V@W)k= @ Vi @Wj. 

i+j=k 

Let V, W be &graded spaces. The twisting morphism T : V 8 W + W 63 V is a 
morphisms of graded spaces defined by 

T(v @I w) = (-l)‘v”w’~ @ v 

forallvEVoUVt,wEWuUWt. 

A.2. Graded algebras 

Definition A.2.1. A triple (A, p, u) where A is a Z$-graded space and p, u are morphisms 
of Z2-graded spaces 

p : A @ A + A (multiplication) 

u : R + A (unit) 

is called a &-graded algebra if the diagrams 

d@d@d 

‘“Y “‘“18 A (associativity) d@d 

A/ 

d@d 
.-‘.^.\ id 8 u 

. . 
R@d ~ " d@R @nltar@) 

. 
A 

commute. 
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A &-graded algebra A is called commutative if the following diagram commutes: 

A 

A morphism of &-graded algebras F : A --+ B is a morphism of graded spaces such that 
the diagrams 

commute. 
The tensorproductofZz-gradedalgebras (A, PA, UA), (B, PB, UB) is the tensorproduct 

A @I B of .&-graded spaces with the &-graded algebra structure given by 

Definition A.2.2. A bigraded algebra A is a &-graded algebra with a Z+-grading A = 
@r”=, A’ such that: 
1. for energy i E Z+, A’ is a Z2-graded subspace of A; 
2. u(W) c A’; 
3. for every i, j E Z+, p(A’ 8 Aj) c A’+j. 

A.3. Graded coalgebras 

Definition A.3.1. A triple (C, A, E) where C is a &-graded space and A, E are morphisms 
of Z2-graded spaces 

A : C + C 8 C (comultiplication) 

&:C--+ [w (counit) 

is called a &-graded coalgebra if the diagrams 
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commute. 

A Zz-graded coalgebra C is called cocommututive if the following diagram commutes: 

A morphism of &-graded coalgebras @ : D -_, D is a morphism of graded spaces 
such that the diagrams 

commute. 
The tensorproduct of &-graded coalgebras (C, A,, EC), (27, AD, ED) is the tensor prod- 

uct C @ D of &-graded spaces with the &,-graded coalgebra structure given by 

Let C be a Z2-graded coalgebra. For any c E C, AC can be written as a (nonunique) sum 
of simple tensors. It is convenient to use the following so called sigma notation: 

AC = c ~(1) @ ~(219 
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where one can assume that all c(l), ~(2) are homogeneous. Similarly, by the coassociativity 
one can write 

Akc = (A @I id 8 . ;. @ id,) o . ’ . o A @I id o A 

k-l 

= 
c c(1) ‘8 . . . 8 c(k+l). 

(c) 

A Z2-graded coalgebra C is irreducible if any of two nonzero &-graded subcoalgebras 
have nonzero intersection. A maximal irreducible &graded subcoalgebra of C is called an 
irreducible component of C. A &graded coalgebra is simple if it has no nonzero proper 
&-graded subcoalgebras. A &-graded coalgebra is pointed if all simple &-graded sub- 
coalgebras are one-dimensional. 

The structure theorem for cocomutative coalgebras [40] is also valid in the &-graded 
case [5,19]. 

Theorem A.3.1. Any cocomutative &-graded coalgebra is a direct sum of its irreducible 
components. 

An element g of a &-graded coalgebra is called group-like if Ag = g @ g. We denote 
the set of all group-like elements of a Z2-graded coalgebra C by G(C). For all g E G(C), 
Rg c Co is a one-dimensional simple Zz-graded subcoalgebra of C. When a &-graded co- 
comutative coalgebra is pointed, each irreducible component C, of C is uniquely determined 
by a unique group-like element g contained in C,. Then the direct sum decomposition takes 
the form 

c= @ c,. 
KEG(C) 

In the case of a pointed irreducible coalgebra C some further structure information is encoded 
in so called coradical filtration [40]. We shall briefly describe the Z2-graded version of this 
construction and theorem [5,19]. 

Definition A.3.2. A filtration of a &graded coalgebra C is a family {C(k))iZo of Z2-graded 
subcoalgebras such that 
1. For any k 5 k’, Cck) is a &-graded subcoalgebra of Cck’). 
2. c = UkZO C(k). 

3. ACck) = Cf=, C(k--i) @ Cci), for all k > 0. 

Let C, be a pointed irreducible Z2-graded coalgebra and g its unique group-like element. 
There is direct sum decomposition 

where CRf = ker EC. Let nz : C, + Cgf be the projection on the second factor. We define 

family (C~‘}~Eo of Hz-graded subcoalgebras of C,: 
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Since both nRf and Ak are morphisms of Z2-graded spaces, Cf) is a &-graded subspace 
of& forallk > 1. 

Proposition A.3.1. Ifc E Cf)+ = Cf) II Ci, then 

Ac=g@c*+c’@g+y, 

where 

k-l 

y E c $0” @ cp+. 

i=l 

(k) Theorem A.3.2. The famdy {C, }pxo is ajiltration of the coalgebra C,. 

The filtration of the theorem above is called the coradicaZ$Ztration. 
Let g be a group-like element of a &-graded coalgebra C. An element p E C is called 

primitive with respect to g if 

Ap=p@g++c3p. 

We denote the set of all elements p E C primitive with respect to g by Ps(C). Note that 
PR (C) c C,, where C, is the irreducible component containing g. By Proposition A.3.1 

c(l) = Rg @ P&z). g 

In particular Pg (C) is a Zz-graded subspace of C. In case of a pointed irreducible Z2-graded 
coalgebra C we denote by P(C) the space of all primitive elements with respect to a unique 
group-like element in C. 

Proposition A.3.2. Let C, V be &-graded cocommutative coalgebras and @, p mor- 
phisms of &-graded coalgebras D + C. Suppose C is pointed irreducible, then f = g if 
and only ifIm(0 - i&‘) fl P(C) = (0). 

Definition A.3.3. A bigraded coalgebra is a Z2-graded coalgebra C with a Z+-grading 

c = @k>O Ck such that: 
1. For every k 2 0, Ck is a Zz-graded subspace of C. 
2. .s(Ck) = 0 for all k 2 1. 
3. For every k 1 0, A(Ck) c @&, Ci 8 Ck-’ . 
A bigraded coalgebra C is called strictly bigraded if Co = [FB and C’ coincides with the space 
P(C) of all primitive elements of C. 
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Note that the condition Co = R implies that a strictly bigraded coalgebra is pointed 
irreducible. The relation between the Z+-grading and the coradical filtration in strictly 
bigraded coalgebras is given by the following: 

Proposition A.3.3. A bigraded coalgebra C with Co = R is strictly bigraded ifand only if 
for every k > 0 

c(k) = &ci. 
i=O 

A.4. Graded bialgebras 

Definition A.4.1. A system (l3, p, u, A, E) where t3 is a &graded space and P, u, A, E 
are morphisms of &-graded spaces 

p:t?@Z3+t3 A:B+B@B 
u:R+B s:B+R 

is called a Z2-graded bialgebra if 
1. (23, w, u) is a &-graded algebra. 
2. (B, A, E) is a &graded coalgebra. 
3. A and 6 are morphisms of &-graded algebras. 

Note that condition 3 can be replaced by requirement that p and u are morphisms of 
&-graded coalgebras. 

Definition A.4.2. A bigraded bialgebra is a &-graded bialgebra which is both a bigraded 
algebra and bigraded coalgebra with respect to the same Z+-grading. 

A bigraded bialgebra is called cocommutative, pointed, irreducible, strictly bigraded, if 
it is so with respect to its coalgebra structure. 

Definition A.4.3. A Zz-graded bialgebra ‘FI is called a &graded Hopf algebra if there 
exists a morphism of &-graded spaces s : ‘FI -+ ‘H such that the diagram 

commutes. The morphism is called the antipode of 7-L 

The antipode if exists is unique. One can also show that s is a &graded algebra and 
coalgebra antimorphism, i.e. the following diagrams are commutative. 
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If ‘FI is a bigraded bialgebra and the antipode exists, it necessarily respects Z+-grading. 

AS. Dual coalgebras 

Let (A, M, u) be an algebra over R with multiplication M : A ~3 A + A and unit 
u : R + A. We denote by A” the subspace of the full algebraic dual A’ consisting of all 
elements a E A’ such that ker a! contains a cofinite ideal of A. 

Proposition A.5.1. Let A, B be Z2-graded algebras and F : A -+ B a morphism of 
&-graded algebras. Then: 
1. A” is a linear subspace of A’. 
2. Let F’ : B’ -+ A’ be dual to F : A + B. Then F’(B”) c A”. 
3. A” @ t3” = (A ~3 B)“. 
4. Let M’ : A + (A @ A)’ be the dual to the multiplication in A. Then M’(A”) c A” @A”. 

Proposition A.5.2. Let (A, M, u) be a Z2-graded algebra over R. Then the maps 

define on A0 a structure of &-graded coalgebra. If A is &-graded commutative then A0 
is &-graded cocommutative. 

Definition A.5.1. The coalgebra (A”, A, E) of Proposition AS.2 is called the dual coalge- 
bra of (A, M, u). 

The following property of (A”, A, E) may serve as independent definition of dual 
coalgebra. 

Proposition A.5.3. A” is the maximal coalgebra in A’, i.e. iffor a! E A’, M’(a) E A’ @ A’ 
thena E A”. 
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The dual coalgebras of Zz-graded algebras of superfunctions of BLK supermanifolds 
have been analysed in [5,19]. Here we briefly present structure results used in the main text. 

Proposition A.54 Let A(M) be the Zz-graded algebra of superfunctions on a super- 
manifold AM. Then 
1. A(M)” is a pointed &-graded cocomutative coalgebra. 
2. Each group-like element of A(M)” is of the form 

8, = (P, .) : A(M) 3 f + f’(p) E ~8 

for some p E M. 

By the structure theorem for pointed Z2-graded cocomutative coalgebras (Theorem 
A.3. l), one has the following: 

Proposition A.55 A(M)” is the direct sum of pointed irreducible coalgebras 

A(M)” = @ AM;, 
PCM 

where A(M); denotes the irreducible component containing the group,-like element 6,. 

Applying the structure theorem for pointed irreducible Z2-graded coalgebras (Theorem 
A.3.2) one gets for each irreducible component A(M); the coradical filtration 

A(M); = u A(M);@‘, 
P-‘J 

with 

A(M),., O(O) = Iwp, 

A(M);(‘) = Rp 633 P(A(M);), 

where P(A(M);) is the space of all primitive with respect to 6, elements of A(M)“. A 
more detailed description is given by the following [5,19]: 

Proposition A.5.6. Let A(M); = IJk,O A(M);@’ be the coradical filtration of the irre- 
ducible component A(M); of the dual coalgebra A(M)“. Then for each k > 0 

A(M);‘@ = {a E A(M)“‘@ : ((w, I;+‘) = 0) = (A(M)/Zk+‘)‘, 
P 

where I, is a maximal ideal in A(M) consisting of all super-functions f E A(M) such that 

fO(P> = 0. 
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